Bats (Mammalia: Chiroptera) of the Eastern Mediterranean. Part 5. Bat fauna of Cyprus: review of records with confirmation of six species new for the island and description of a new subspecies

Petr Benda ${ }^{1,2,5}$, Vladimír HANÁK ${ }^{2}$, Ivan Horáčé ${ }^{2}$, Pavel Hulva ${ }^{2}$, Radek Lučan ${ }^{3)}$ \& Manuel Ruedi ${ }^{4)}$
${ }^{1)}$ Department of Zoology, National Museum (Natural History), Václavské nám. 68, CZ-115 79 Praha 1, Czech Republic
${ }^{2)}$ Department of Zoology, Faculty of Science, Charles University in Prague, Viničná 7,
CZ-128 44 Praha 2, Czech Republic
${ }^{3)}$ Department of Zoology, University of South Bohemia, Branišovská 31, CZ-370 05 České Budějovice, Czech Republic
${ }^{4)}$ Department of Mammalogy and Ornithology, Natural History Museum of Geneva, C.P. 6434, $\mathrm{CH}-1211$ Genève 6 , Switzerland
${ }^{5)}$ corresponding author: petr.benda@nm.cz

Abstract

A complete list of bat records available from Cyprus, based on both the literature data and new records gathered during recent field studies. The review of records is added with distribution maps and summaries of the distribution statuses of particular species. From the island of Cyprus, at least 195 confirmed records of 22 bat species are known; viz. Rousettus aegyptiacus (Geoffroy, 1810) (50 record localities), Rhinolophus ferrumequinum (Schreber, 1774) (12), R. hipposideros (Borkhausen, 1797) (18), R. euryale Blasius, 1853 (1-2), R. mehelyi Matschie, 1901 (1), R. blasii Peters, 1866 (11), Myotis blythii (Tomes, 1857) (4), M. nattereri (Kuhl, 1817) (11), M. emarginatus (Geoffroy, 1806) (2), M. capaccinii (Bonaparte, 1837) (1), Eptesicus serotinus (Schreber, 1774) (6), E. anatolicus Felten, 1971 (1), Hypsugo savii (Bonaparte, 1837) (10), Pipistrellus pipistrellus (Schreber, 1774) (2), P. pygmaeus (Leach, 1825) (3), P. kuhlii (Kuhl, 1817) (36), Nyctalus noctula (Schreber, 1774) (1-3), N. leisleri (Kuhl, 1817) (2), N. lasiopterus (Schreber, 1780) (1), Plecotus kolombatovici Đulić, 1980 (7), Miniopterus schreibersii (Kuhl, 1817) (7), and Tadarida teniotis (Rafinesque, 1814) (8). Four species (Eptesicus anatolicus, Pipistrellus pipistrellus, Nyctalus leisleri, N. lasiopterus) are reported here from Cyprus for the first time. Two other species (Plecotus kolombatovici and Tadarida teniotis), which were previously suggested to inhabit Cyprus, are here confirmed to occur the island. Cypriot populations of Pipistrellus pygmaeus have been found to be morphologically and genetically unique and therefore described as a separate subspecies, P. pygmaeus cyprius subsp. nov.

Distribution, taxonomy, Chiroptera, Middle East, Pipistrellus

INTRODUCTION

The island of Cyprus ($9,251 \mathrm{~km}^{2}$; Fig. 1), the third largest Mediterranean island, is situated in the northeastern corner of the Mediterranean Sea, ca. 70 km off the southern shore of Asia Minor and ca. 100 km west of the shore of the Levant. Biogeographically, it represents a part of the proper Mediterranean arboreal region, its vegetation belongs to the zone of Mediterranean woodland climaxes (Zohary 1973). The Cypriot fauna and flora are mostly composed of true Mediterranean elements with a large influence of the Irano-Turanian groups and with a certain level of island endemism (see the comparisons by Spitzenberger 1979).

Nevertheless, the geological history of Cyprus is unique and different from other Mediterranean islands. The island is a block of the oceanic crust of the Tethys Sea uplifted over subduction zone
of the Cypriot Arc. Deep sea above the subduction zone always kept the island isolated and its current distance from the nearest Anatolian shore (70 km) is the nearest since the Middle Miocene when the island first raised above the sea level (Schmidt 1960). The marked isolation of Cyprus from the Anatolian mainland was probably not interrupted by the sea-level drop during the Messinian Salinity Crisis (by $800-1300 \mathrm{~m}$) - even then it was surrounded by sea ways (Ben-Avraham et al. 2006). However, during this time, the distance to the shore of Asia Minor via the Hatay and Latakia Basins was considerably shortened and a temporary terrestrial contact (5.9-5.4 Ma) cannot be completely excluded. In any case, the Late Cenozoic eustatic sea-level oscillations which essentially influenced biotic history of other Mediterranean islands did not change the extent of isolation of Cyprus. In short, Cyprus is the island which never came in contact with mainland at least during the last 5 Ma . Hence, it could be colonised only by overwater dispersals via rafting or aerial migrations and/or under direct influence of anthropogenic colonisations. The first archaeologically evidenced human colonisations are dated to the 10th millenium BC - which probably caused the extinction of the local dwarf hippopotamus, Phanourios minor (Desmarest, 1822) (Simmons 2001) - and since the Neolithic (7000 BC) the human settlements and contacts with mainland were more common (Swiny 2001). The original mammalian fauna prior to human colonisation was poor (Boekschoten \& Sondaar 1972) and even the recent mammalian fauna of Cyprus exhibits the specifics corresponding to the above mentioned paleogeographic setting of the island.

Surprisingly, the contemporary mammalian fauna of Cyprus has not been well studied except for two major field studies - one undertaken by Dorothea Bate (Bate 1903) and the other

Fig. 1. General map of Cyprus; main geographical features mentioned in the text (pale shaded, area above 500 m a. s. 1.; dark shaded, area above 1000 m a . s. l.).

Table 1. Composition of the bat fauna of Cyprus and cumulative numbers of the bat records of particular species according to subsequent reviews. Kryštufek \& Vohralík $(2001,2005)$ mentioned only the presence of a species but not review of its records. The unconfirmed records or species affiliations are in parantheses

species	$\begin{aligned} & \hline \text { Bate } \\ & 1903 \end{aligned}$	Spitzenberger 1979	Boye et al. 1990	Kryštufek \& Vohralík 2001, 2005	present review
Rousettus aegyptiacus	+	9	21	+	50
Rhinolophus ferrumequinum	2	2	4	+	12
Rhinolophus hipposideros	1	5	8	+	18-20
Rhinolophus euryale	-	(-)	1	+	(1-2)
Rhinolophus mehelyi	-	1	1	+	1
Rhinolophus blasii	1	4	6	+	11
Myotis blythii	(1)	1	2	+	4
Myotis nattereri	-	-	3	+	11
Myotis emarginatus	-	-	-	+	2
Myotis capaccinii	-	(1)	1	+	(1)
Eptesicus serotinus	-	1	1	+	6
Eptesicus anatolicus	-	-	-	-	1
Hypsugo savii	-	1	1	+	10
Pipistrellus pipistrellus	-	-	-	-	2
Pipistrellus pygmaeus	-	-	-	+	3
Pipistrellus kuhlii	2	4	14	+	36
Nyctalus noctula	-	1	1-2	+	(1-3)
Nyctalus leisleri	-	-	-	-	2
Nyctalus lasiopterus	-	-	-	-	1
Plecotus kolombatovici	-	-	(2)	(+)	7
Miniopterus schreibersii	1	1	3	+	7
Tadarida teniotis	-	-	(1)	+	8
total species	6-7	11+	15-16	17-18	22

by Friederike Spitzenberger (Spitzenberger 1978, 1979) - constituting the basic knowledge of Cypriot mammals, including bats (Table 1). Bate (1903) reviewed the presence of at least six bat species (among 15 mammal species), however, almost without giving detailed distribution data. Spitzenberger $(1978,1979)$ summarised extensive results of her own field studies and reported well documented occurrence of 20 mammalian species from Cyprus, including at least 11 species of bats. She showed bats to be the prevailing component of the Cypriot mammalian fauna and provided numerous data on ecology of particular species as well as detailed taxonomic analyses in three bat species (Rousettus aegyptiacus, Rhinolophus hipposideros and Myotis blythii). The latest paper surveying the Cypriot bat fauna in details is that by Boye et al. (1990) who reported new records of 11-12 species by which the total number of Cypriot bat species increased to 15-16.

The first reported bat species from Cyprus was the most remarkable member of its bat fauna, Rousettus aegyptiacus (Geoffroy, 1810). It was mentioned by Unger \& Kotschy (1865), who also reported a bat named Vespertilio murinus, which could be co-identified with the modern Myotis blythii (Tomes, 1857) (see below). Günther (1879) mentioned the first undoubtedly identifiable record of a vespertilionid bat, Pipistrellus kuhlii (Kuhl 1817), and Doria (1887) of a rhinolophid, Rhinolophus hipposideros (Borkhausen, 1797). Bate (1903) in her review of Cypriot mammals added three species of bats, Rhinolophus ferrumequinum (Schreber, 1774), R. blasii Peters, 1866 and Miniopterus schreibersii (Kuhl, 1817) and the report of ' V. murinus' by Unger \& Kotschy (1865) interpreted as Myotis myotis (Borkhausen, 1797). Kahmann \& Çağlar (1959, 1960) further mentioned the occurrence of Rhinolophus mehelyi Matschie, 1901 and Myotis capaccinii (Bonaparte, 1837) in Cyprus, however, without giving any details. Another bat species, Hypsugo
savii (Bonaparte, 1837), was mentioned by Harrison (1961) based on an older museum specimen from the British Museum (Natural History). As a result of several research trips to Cyprus, Spitzenberger (1979) added three bat species to the island's fauna, Myotis blythii (Tomes, 1857), Eptesicus serotinus (Schreber, 1774) and Nyctalus noctula (Schreber, 1774). However, M. blythii was perhaps found already by Unger \& Kotschy (1865) (but mentioned under an incorrect name, see above). Boye et al. (1990) reported Rhinolophus euryale Blasius, 1853, Myotis nattereri (Kuhl, 1817) and Plecotus austriacus (Fischer, 1829) from Cyprus; they also suggested a possible occurrence of another species, Tadarida teniotis (Rafinesque, 1814). More recently, two other species were added to the Cypriot fauna, Myotis emarginatus (Geoffroy, 1806) (Heller et al. 2001), and Pipistrellus pygmaeus (Leach, 1825) (Hanák et al. 2001, Stadelmann et al. 2004, Hulva et al. 2004). Finally, Kryštufek \& Vohralík $(2001,2005)$ listed 18 species of bats in their comprehensive survey of mammals of Turkey and Cyprus, including the doubtful items (Table 1).

Despite these efforts, the Cypriot bat fauna has belonged to the least known one in the eastern Mediterranean until recently. Seven species were recorded just with a single poorly documented record (or even single individual), and reliable information on taxonomic status was available only in a few species. There was no information at all on the relationship between the island and mainland populations, and, consequently, on the history of Cypriot bat fauna and biogeographic specifics of that region.

With respect to this, we performed several research trips to Cyprus, visited about 40 localities and collected numerous records of 18 species of bats. This effort has increased the number of species reported in the island to 22 . We collected many tissue samples for molecular analyses (in total 336 individuals of 18 species) that will be reported elsewhere. A limited number of voucher specimens is deposited in the collections of the National Museum (Natural History), Prague and Natural History Museum, Geneva. Here, we present a review of all available bat records from Cyprus as well as some additional data on bat biology from this island. With this paper we continue the summaries on bat fauna of the northern regions of the eastern Mediterranean already published (Benda \& Horáček 1998, Hanák et al. 2001, Benda et al. 2003b, 2006) and emphasise the quite specific insular conditions of the Cypriot fauna.

MATERIAL AND METHODS

The lists of records (arranged in alphabetical and/or chronological order) include the following information: political part of the island (in spaced types), name of the locality (each record is primarily listed by a name of the nearest settlement) [in brackets, number of locality as indicated in the map], and/or description of the record site, date, number of recorded bats with indication of their sex, age and physiological condition (see Abbreviations below for details).

For morphological comparisons, we used museum specimens, which were examined in the same way as described in previous studies (e.g., Benda et al. 2004a, b). The specimens were measured in a standard way with the use of mechanical or optical callipers. For the evaluated external and cranial measurements, see Abbreviations. Statistical analyses were performed using the software Statistica 6.0. Other methodological details or aspects are discussed in the chapters concerning taxonomic revisions of the respective species.

For the genetic part of the study applied on several species, we have used the analysis of mitochondrial DNA. Genetic material was obtained from pectoral muscles or wing punches preserved in alcohol. 402 bp of cytochrome b gene (or 1140 bp in the case of Rousettus aegyptiacus comparison) were isolated according to the protocol described by Hulva et al. (2004). For comparisons, sequences from previous studies stored at GenBank were used, as described in the respective species chapters. Genetic distances and phylogenetic reconstructions were obtained using PAUP 4.0 b 10 (Swofford 2001).

ABBREVIATIONS

Collections

BMNH - Natural History Museum, London, United Kingdom; FMNH - Field Museum of Natural History, Chicago, U. S. A.; MHNG - Natural History Museum, Geneva, Switzerland; MNS - State Natural History Museum, Stuttgart,

Germany; MSNF - Natural History Museum, Florence, Italy; NMP - National Museum (Natural History), Prague, Czech Republic; NMW - Natural History Museum, Vienna, Austria; SKM - University of Munich, Germany; USNM - United States National Museum, Washington, U. S. A.; ZMA - Zoological Museum, Amsterdam, the Netherlands; ZIN - Zoological Institute, St. Petersbourg, Russia; ZMB - Zoological Museum, Humboldt University, Berlin, Germany.

Measurements

$\mathrm{LC}=$ head and body length; $\mathrm{LCd}=$ tail length; $\mathrm{LAt}=$ forearm length; $\mathrm{LPol}=$ thumb length (without claw); $\mathrm{LA}=$ auricle length; $\mathrm{LTr}=$ tragus length; $\mathrm{G}=$ body weight; $\mathrm{LCr}=$ greatest length of skull; $\mathrm{LCb}=$ condylobasal length of skull; LCc = condylocanine length of skull; $\mathrm{LaZ}=$ zygomatic width; $\mathrm{LaI}=$ width of interorbital constriction; $\mathrm{LaN}=$ neurocranium width; $\mathrm{ANc}=$ neurocranium height; $\mathrm{LBT}=$ largest horisontal length of tympanic bulla; $\mathrm{CC}=$ rostral width between canines (incl.); $\mathrm{M}^{3} \mathrm{M}^{3}=$ rostral width between third upper molars (incl.); $\mathrm{CM}^{3}=$ length of upper tooth-row between CM^{3} (incl.); $\mathrm{M}^{1} \mathrm{M}^{3}=$ length of upper tooth-row between $\mathrm{M}^{1} \mathrm{M}^{3}$ (incl.); $\mathrm{CP}^{4}=$ length of upper tooth-row between CP^{4} (incl.); LCs = mesiodistal length of the upper canine; $\mathrm{LaCs}=$ palatolabial width of the upper canine; $\mathrm{LMd}=$ condylar length of mandible; $\mathrm{ACo}=$ height of coronoid process; $\mathrm{CM}_{3}=$ length of lower tooth-row between CM_{3} (incl.); $\mathrm{M}_{1} \mathrm{M}_{3}=$ length of upper tooth-row between $\mathrm{M}_{1} \mathrm{M}_{3}$ (incl.); $\mathrm{CP}_{4}=$ length of upper tooth-row between CP_{4} (incl.).

Other abbreviations

$\mathrm{a}=$ adult; $\mathrm{A}=$ alcoholic preparation; $\mathrm{B}=$ skin (balg); $\mathrm{f}=$ female; $\mathrm{j}=$ juvenile; $\mathrm{m}=$ male; $\mathrm{s}=$ subadult; $\mathrm{S}=$ skull; $\mathrm{Sk}=$ skeleton.

LIST OF SPECIES

Rousettus aegyptiacus (Geoffroy, 1810)

Records. Original data: S outhern Cy prus: Kynousa, pine forest 1 km to E [1], 6 September 2000: net. 1 fa, 2 faL; - Neo Horio, ca. 4 km to NNW, Loutra tis Afroditis ('Baths of Aphrodite') [2], 9 April 2005: a carcass of an adult individual found in the water pool (NMP 90399 [S]); - Neo Horio, Petratis gorge ca. 4 km to E [3], small caves, 7 September 2000: obs. a nursery colony of ca. 100 inds. and several isolated inds.; - Neo Horio, Smigies Trail ca. 3 km to NW, abandoned chromite mine system 'Magnesia Mine' [4], 27 March 2005: obs. colony of ca. 20 inds. inside the mine, net. 2 fs at entrance and 1 ms above a cliff (NMP 91274 [S+A]); 12 October 2005: net. $5 \mathrm{mj}, 2 \mathrm{fj}$; a rocky niche in a top of hill, 27 March 2005: net. 1 fs ; - Paramali, 2 km to SW [5], disused stream ford, 10 April 2005: obs. 1 flying ind.; - Prodromi, Androlikou gorge ca. 2 km to SW [6], small cave, 26 March 2005: net. $10 \mathrm{ma}, 2$ fa, 4 fs ; 20 April 2005: net. 1 ma (NMP 90435 [S+A]), obs. several feeding inds.; - Steni, small cave 1.5 km to E [7], 6 September 2000: obs. nursery colony of ca. 50 inds., coll. 1 fj (MHNG 1807.092 [A]). - Northern Cyprus: Afendrika, ruins of the Asomatos church [8], 17 October 2005: net. $13 \mathrm{ma}, 4 \mathrm{fs} / \mathrm{j}$; - Agırdağ, cleft cave [9], 5-6 April 2005: obs. colony of min. 12 inds., net. 6 ma , $1 \mathrm{fa}, 1 \mathrm{fs}$; - Beylerbeyi, Bellapais Abbey ruins [10], 27 July 2006: feeding rests (places with remnants of repeated feeding; Fig. 2); - Gazimağusa, old town [11], ruins of two mediaeval churches, 19 April 2005 \& 25 July 2006: feeding rests (places with remnants of repeated feeding; Fig. 3); - Lefkoşa, above a highway at the eastern margin of the town [12], 6 April 2005: obs. 1 flying ind.; - St. Hilarion Castle, cave in a cliff wall below the castle [13], 4 April 2005: obs. colony of ca. 50 inds.; - Yedikonuk, a cave ca. 2 km to N [14; Fig. 4], 17 October 2005: obs. colony of ca. 800 inds. (exam. $3 \mathrm{ma}, 3 \mathrm{fa}$, 8 fa+6mj, 2fj). - Published data: Southern C y prus: Akamas [cf. 2, 4], 1987, destroyed roost (Boye et al. 1990); Akamas, cave, 1990-1993: ca. 1000 inds. (Hadjisterkotis 2006); - Akamas, Petratis [3], cave, 1960s: several thousands inds., 1990-1993: ca. 1000 inds. (Hadjisterkotis 2006); - Akamas, Thalassines spilies [15], cave, 1960s: several hundreds inds., 1990-1993: 1 ind. (Hadjisterkotis 2006); - Akrotiri [16] (Bergmans 1994); - Apsiou [17] (Limassol), 30 March 1973: 30 m , 83 f (NMW 20730-20843 [107 S, 7 Sk, 7 B, 6 A]), a colony of 400-500 inds. (Spitzenberger 1979); Apsiou, 30 March 1973: $1 \mathrm{~ms}, 1 \mathrm{f}$ (ZMA 22.124, 22.125 [S+A]; leg. F. Spitzenberger) (Bergmans 1994); 1988, destroyed roost (Boye et al. 1990); - Asproyia [= Asprogia], cave [18], 1960s: several hundreds of inds. (Hadjisterkotis 2006); - Ayia [= Agia] Napa [19] (Famagusta), 6 April 1973: 7 m, 4 f (NMW 20981-20991 [11 S]) (Spitzenberger 1979); - Cape Greco [$=$ Akrotiro Gkreko] [20], 1988, destroyed roost (Boye et al. 1990); - Empa, cave [21], 1960s: several hundreds of inds. (Hadjisterkotis 2006); - near Episkopi [22], specimens recorded (Boye et al. 1990); - Episkopi Bay [23] (Bergmans 1994); - Kissonerga, cave [24], 1960s: several hundreds of inds. (Hadjisterkotis 2006); - Konktia [= ?Kouklia] [25], 21 April 1913: 4 inds. (ZMB; G. Cecconi) (Bergmans 1994); - Ktema [= Ktima] [26], 200', 18 March 1902: 1 fj (BMNH 3.12.4.4 [S+B]; leg. Miss D. M. A. Bate) (Andersen 1912); - Larnaka [27], 1896: 1 f (MNS 2210 [S+A]) (Kock 1978); Larnaka, 1 ind. (USNM 123303; leg. G. Cecconi) (Bergmans 1994); - Lachi [= Latsi] [28] (Bergmans 1994); - some km to S of Lachi [$=$ Latsi] [cf. 3], 15 and 16 May 1985: $6 \mathrm{~m}, 1 \mathrm{f}, 2 \mathrm{fs}$ (ZMA 22902-22910; leg. J. van Wingerde) (Bergmans 1994); - Limassol [= Lemesos] [29], a cave to N, early 1980s: obs. colony of 300-400 inds., late 1980s: obs. 1 ind. (Boye et al. 1990); - Nicosia [= Lefkosia] [30], 440-700', April, October and November 1901-1902: $1 \mathrm{ma}, 2 \mathrm{mj}, 1 \mathrm{fa}, 1 \mathrm{fj}$ (BMNH 3.12.4.1-3.12.4.3, 3.12.4.5, 3.12.4.6 [5 B, 2 S]; leg. Miss D. M. A. Bate) (Andersen 1912, cf. Bergmans 1994); Nikosia, 1 ind. (cf. Reinhold 1987); - near Paphos [= Pafos] [31], specimens recorded (Boye et al. 1990); - Paralimni

Figs. 2, 3. Feeding places of Rousettus aegyptiacus (Geoffroy, 1810) found in populated sites of Cyprus (both photos by Z. Bendová); remnants included mainly date and apricot stones (along with faeces and urine splodges). 2 (left) - ruined Bellapais Abbey at Beylerbeyi. 3 (right) - ruined church of St. George of the Greeks in Gazimağusa.
[32] (Bergmans 1994); - Paramali [33], 1988, destroyed roost (Boye et al. 1990); - Polemi, cave [34], 1960s: several hundreds of inds. (Hadjisterkotis 2006); - Polis [35] (Bergmans 1994); - Prastiou [= Prastio] [36] (Limassol), 31 March 1973: 1 ind. (NMW 20867 [A]) (Spitzenberger 1979); - Prastiou [= Prastio], mine [37] (Limassol), 31 March 1973: 6 m , 17 f (NMW 20844-20866 [23 S]), colony of ca. 800 inds. (Spitzenberger 1979); - between Pyla and Troulli [= Troulloi] [38] (Larnaca), January-July 1977: 1 f (NMW 23386 [S]; leg. K. Kollnberger) (Spitzenberger 1979); - Steni, cave [7], 1960s: several hundreds of inds. (Hadjisterkotis 2006); - Stroumbi [= Stroumpi], cave [39], 1960s: several hundreds of inds., 1990-1993: ca. 50 inds. (Hadjisterkotis 2006); - Vretsia, cave [40], 1960s: several hundreds of inds., 1990-1993: obs. inds. (Hadjisterkotis 2006); - Yermasoyia-Reservoir [= Germasogeia] [41], (Limassol), 3 April 1973: $40 \mathrm{~m}, 69 \mathrm{f}$, 4 inds. (NMW 20868-20980 [113 S]), 145 inds. (from owl pellets) (Spitzenberger 1979); Yermasoia [= Germasogeia] Reservoir, 1987 and 1988, destroyed roost (Boye et al. 1990). - Nort hern C y prus: near Ayioa [= Agios] Epiktitos [42] (Bergmans 1994); - Bellapais Abbey [10], feeding rests (Spitzenberger 1979); Bellapais, monastery ruins, 8 August 1988: 15 inds. (Opstaele 1990); Bellapais, 1989, destroyed roost (Boye et al. 1990); - Famagusta (= Gazimağusa) [11], obs. 20-50 inds. (Spitzenberger 1979); at Famagusta, specimens recorded (Boye et al. 1990); - west of Nicosia [= Lefkoşa] [43], specimens recorded (Boye et al. 1990); - between Klepini and Pentadactylos [$=$ Pentadaktylos, Bessparmak] [44] (Bergmans 1994); - near Kyrenia [45], specimens recorded (Boye et al. 1990). - C y p r u s: Insel Zypern [= Cyprus] (Unger \& Kotschy 1865) = Zypern [= Cyprus], without exact finding site, 1863: 2 f (NMW 17874, 17875 [A]; leg. Th. Kotschy) (Spitzenberger 1979);-Cyprus, 38 inds. [Lord Lilford coll.] (Günther 1879; as Cynonycteris collaris) = Cyprus, $4 \mathrm{ma}, 4 \mathrm{fa}$ (BMNH 79.10.16.1-79.10.16.6, 99.7.2.1, 99.7.2.2 [6 A, 4 S]; Lord Lilford coll.) (Andersen 1912, Bergmans 1994); - Cypern [= Cyprus], $3 \mathrm{~m}, 1 \mathrm{f}$ [Rolle] (Matschie 1899) = Cyprus, $1 \mathrm{~ms}, 1 \mathrm{f}, 2$ inds. (ZMB 10248-10251 [S+A]; leg. Rolle) (Bergmans 1994); - excessively common in Cyprus (Bate 1903); - Cyprus (Theodor 1954); - [Cyprus undef.] Trozina (Bergmans 1994).

Comments. Rousettus aegyptiacus is the most frequently recorded bat species in Cyprus, at least 46 localities are available from throughout the island (see Fig. 5 and Table 1), plus some other

Fig. 4. Caves ca. 2 km north of Yedikonuk, Karpaz peninsula, northeastern Cyprus, where a colony of ca. 800 individuals of Rousettus aegyptiacus was found (photo by I. Horáček).
unlocalised reports (and most probably, there exist also some overlooked reports similar to those by Rheinhold 1984 or Opstaele 1990). The records come mainly from the agricultural landscape at lower altitudes, from the sea level to foothills of higher mountain ranges. Although the highest site of R. aegyptiacus is reported from around 770 m a. s. 1. (Asprogia; Hadjisterkotis 2006), the

Fig. 5. Records of Rousettus aegyptiacus (Geoffroy, 1810) in Cyprus.
mean altitude is only 187 m and about two third of the Cypriot localities (34) are found at the altitudes below this level. Along with Pipistrellus kuhlii, the second most frequently recorded bat species in Cyprus (Table 1), R. aegyptiacus represents a rather lowland element within the Cypriot bat fauna.

The amount of R. aegyptiacus records contrasts with record numbers of other bat species, probably because this large colonial bat is relatively more conspicuous than other bats and because it represents an easily distinguishable serious agricultural pest (see the detailed history of anti-bat campaigns by Hadjisterkotis 2006*). Reports of R. aegyptiacus include the oldest known records of bats coming from the island (Unger \& Kotschy 1865, Günther 1879, Tristram 1884, Matschie 1899 , etc.). The density of records of R. aegyptiacus in Cyprus is also remarkable compared to the records known in the nearby mainland of the northern Levant (i.e., at latitudes corresponding to or higher than those of Cyprus, see the reviews by Bergmans 1994, Karataş et al. 2003b and Benda et al. 2006). In this respect, it resembles the situation known from Lebanon and Israel (i.e., at latitudes lower than those of Cyprus, see Tohmé \& Tohmé 1985 and Mendelssohn \& Yom-Tov 1999). Since its occurrence in southern Turkey and western Syria comprises the northernmost margins of the species distribution range (Bergmans 1994) and seems to represent rather scarce and even isolated fringes of the range, the Cypriot population of R. aegyptiacus represents the northernmost well established and prospering population of the species; the total number of record sites in Turkey and Syria comprises only about one third of those in Cyprus. Spitzenberger (1979) described life history adaptations of the species to the Mediterranean climate on the example of Cypriot samples, which are possibly rather unique for the island populations (see also below). Despite its Neogene records in the western part of the Mediterranean (Aguilar et al. 1985), its present distribution is restricted to the easternmost parts (SW Turkey, Cyprus, W Syria, Lebanon, Israel, W Jordan, and Egypt but not Cyrenaica or Crete) and to the zone of thermo-Mediterranean (in the sense by Blondel \& Aronson 2005). R. aegyptiacus differs considerably in its distribution pattern from other species; in a database of 5,869 bat records placed in the 2×2 degree grid system covering the eastern Mediterranean (26° to $42^{\circ} \mathrm{N}, 18^{\circ}$ to $60^{\circ} \mathrm{E}$), this species exhibits an extreme disproportion between relatively high abundance in all occupied grid cells or even quite a high mean frequency in the sample (1.09) and a very low number of actually occupied cells (i.e. constancy reaching 0.16 only). Surprisingly, it is absent from all islands except for Cyprus (cf. Horáček et al. 2007b).

Unlike for other bat species in Cyprus in which the capture data prevail, the evidence of R. aegyptiacus comes mostly from visual observations of colonies and/or individuals inhabiting caves or mines (Figs. 4, 6, 7). In our original data, six such observations are present (40% of all records, 46% of direct findings) while only four records are nettings (27% and 31%, respectively). The remaining five records comprise observations of flying bats or findings of traditional feeding places with remnants of eaten fruits (Figs. 2, 3). In the published data, the findings from underground shelters make up 67% of records (however, most of the published data represent undefined records). Spitzenberger (1979) reported a well marked bimodal pattern in the reproduction of Cypriot population of R. aegyptiacus, with one peak of births in April and another in June and

[^0]
Figs. 6, 7. Two record sites of Rousettus aegyptiacus (Geoffroy, 1810) in the Akamas peninsula, western Cyprus (both photos by I. Horáček). 6 (left) - small caves and rocky overhangs in the upper part of the Androlikou gorge ca. 2 km southwest of Prodromi, eastern Akamas (calls of Rhinolophus ferrumequinum, Hypsugo savii, Pipistrellus kuhlii, and Tadarida teniotis were also recorded there). 7 (right) - abandoned chromite mine system 'Magnesia Mine' with galleries in three levels, on the Smigies Trail ca. 3 km northwest of Neo Horio, central Akamas; the fruit bats were found inside the mine in March, netted at the entrance to one of the galleries and above a cliff near the top of the hill in March and October but were not be recorded in April and July (Rhinolophus ferrumequinum, R. hipposideros, Myotis nattereri, Hypsugo savii, Pipistrellus kuhlii, Plecotus kolombatovici, Miniopterus schreibersii, and Tadarida teniotis were also recorded in and at the system, i.e. the absolutely highest number of bat species associated with one site in Cyprus).

Table 2. Genetic P-distaces among Rousettus aegyptiacus haplotypes from the Mediterranean and the Middle East based on complete cytochrome b sequences (1140 bp). For the comparative samples origin see Benda et al. (2006)

haplotype	[1]	[2]	[3]	[4]	[5]	[6]	[7]
[1] Cyprus (biopsy, Androlikou)	-						
[2] Lebanon (biopsy, Nahr es Safe)	0.011	-					
[3] Syria (NMP 48264)	0.011	0.001	-				
[4] NE Egypt (NMP 90504)	0.012	0.002	0.003	-			
[5] SW Egypt (NMP 91817)	0.026	0.015	0.016	0.017	-		
[6] Yemen (NMP pb2960)	0.011	0.002	0.003	0.004	0.017	-	
[7] SE Iran (NMP 48383)	0.011	0.001	0.002	0.001	0.016	0.003	-

July. Besides that, she also found frequent appearance of twin embryos of different size, which might suggest a superfoetation, i.e. a further mechanism contributing to plasticity of breeding biology in the species. Our observations conform to bimodality of the birth periods and timing, as suggested by Spitzenberger (1979).

External and cranial dimensions of the examined Cypriot specimens of R. aegyptiacus are shown in Appendix III. They correspond quite well with those reported (based on $n>500$) by Spitzenberger (1979) and conform also her conclusions that the morphometric characteristics of the Cypriot population of the species do not differ in any respect from those of the Levantine and Egyptian populations (see also Bergmans 1994 and Benda et al. 2006 for a review).

This conclusion is supported also by preliminary results of genetic comparisons based on sequence data on the mitochondrial gene for cytochrome b. The Cypriot haplotype is a member of a shallow clade comprising the eastern Mediterranean and other Middle Eastern samples (Syria, Lebanon, Egypt, Iran, Yemen; Table 2). This genetic homogeneity (genetic distance of 1.1-2.6\%) suggests either an extensive gene flow among populations (a quite unlikely possibility given the isolation of Cyprus) or that the local, Cypriot populations originate from a single, quite recent dispersal event from the mainland.

In contrast to other taxa like Pipistrellus pipistrellus complex (Hulva et al. 2004), Myotis myotis group (Ruedi et al. 2004) or Miniopterus schreibersii (Bilgin et al. 2006), R. aegyptiacus therefore shows almost no clear geographic genetic partitioning not only within the eastern Mediterranean but also in neighbouring areas (Yemen, Iran, SW Egypt). All the populations are separated with shallow distances, suggesting that they share a recent common ancestor or maintain gene flow among all these regions. As an additional explanation, we propose the following facts: (1) R.aegyptiacus is apparently a good disperser - few tens of kilometres represent apparently no barrier for its spreading. Then it is surprising why the species distribution of in the region is not more continuous (note a very low constancy in the species). Consequently, (2) there are obviously certain limiting ecological factors, which restrict further spreading of the species. The first of them is a continuous availability of appropriate food (fruits) throughout the vegetation season. For that reason the desert regions are not colonised though the species may survive temporarily even in quite isolated oases (cf. E Iran, Yemen, Sinai - own unpubl. data). (3) A physiological inability to hibernate limits colonisation to the more northerly regions or to those at higher altitudes because of unsuitable conditions during the winter. Nevertheless, even in the thermo-Mediterranean, winters are relatively cold and do not offer the preferred diet of R. aegyptiacus (soft fruits such as bananas, oranges, figs, etc.). (4) The winter shortage of diet is thus probably an important limiting factor for the survival of this species. In the Mediterranean, R. aegyptiacus feeds almost exclusively on the carob (Ceratonia siliqua Linnaeus, 1758). This was reported many times both from Cyprus (already by Unger \& Kotschy 1865) and Israel. Korine et al. (1999) demonstrated that in Israel,

Ceratonia (together with the Chinaberry, Melia azedarach Linnaeus, 1753, an Indian tree introduced to the Mediterranean but rare in Cyprus) forms a predominant component of the diet from November to March while it is absent in the diet in other months. In Cyprus we observed feeding on carob until the beginning of April - the feeding is associated with transportation of the fruits into feeding caves (small spacious caves not used for roosting) where the floor is often covered by seeds and pod remnants of carob (Fig. 8). Later, from mid-April when other fruits appear, R. aegyptiacus stop feeding on carob including night visits of the feeding caves, changing the way of foraging. From that time on, the captured individuals avoided (in contrast to other fruits) carob quite strictly. (5) The relationship between R. aegyptiacus and carob is even tighter, of course. The origin and background of the quaint features of the tree are often considered as quite unclear. Here we suggest that most of them, particularly the fructification strategy of the tree (cf. cauliflory, long fructification period timed to winter, olfactoric instead of optic signs of fructification, etc.), evolved apparently under a strong dependence on chiropterochory. At the same time, R. aegyptiacus could quite successfully play a role of a very effective agent of seed dispersal.

The original range of the carob is generally unknown, it is expected that is was relatively small and supposedly restricted to the Levant (De Candolle 1883, Batlle \& Tous 1997, Bures et al. 2004). Since we suggest here that in the Mediterranean, R. aegyptiacus and C. siliqua represent a single, densely integrated synchorologic unit (established under conditions of pronounced seasonality, particularly pertinent in the latest Caenozoic), we expect the same for R. aegyptiacus too. Despite of its dispersal potential, this bat was capable to survive only in the region first colonised by the carob. In contrast, the long distance seed dispersal is almost impossible for the carob and there is no motivation for the bat to perform it. The situation changed with human impact and the anthropogenic spreading of the carob throughout the ancient World that may have provided the conditions for successful colonisation of many regions of the eastern Mediterranean thermal

Fig. 8. Remnants of the carob (Ceratonia siliqua) consumed by Rousettus aegyptiacus in Cyprus in winter (gallery of the abandoned 'Magnesia Mine' near Neo Horio, central Akamas, see Fig. 7) (photo by I. Horáček).
zone by R. aegyptiacus. This scenario would then explain the lack of major genetic differentiation among populations. The species has not succeed in colonising other suitable but more distant (or more isolated) regions from its original range in the Levant (e.g. Crete, Aegean Islands, and/or central and western Mediterranean) though rich in carob (see also Horáček et al. 2007a).

Rhinolophus ferrumequinum (Schreber, 1774)

Records. Original data: S o u thern Cy prus: Apsiou [1], irrigation reservoir near the village, 30 March 2005: det. 1 ind.; - Kakopetria, Troodos Forest, abandoned mine 5 km to SW [2], upper gallery (Fig. 10), 13 October 2005: net. 1 ma , $1 \mathrm{mj}, 1 \mathrm{fs}$, det. 1 ind. near the mine entrance; 14 October 2005: net. 1 ma (NMP 91225 [S+A]); - Kalavasos, abandoned mine ca. 3 km to NW [3; Fig. 11], 19 April 2005: net. 1 faG (NMP 90432 [S+A]); - Neo Horio, Smigies Trail ca. 3 km to NW [4], abandoned chromite mine system 'Magnesia Mine', 27 March 2005: coll. 1 ma, 1 fs , net. 1 fa (NMP 91248 [A], 91249,91250 [S+A]); 12 October 2005: obs. 3 inds. in mine, net. 3 fa (NMP 91204 [A], 91205,91206 [S+A]); 21 July 2006: obs. 2 inds. in the mine; - Prodromi, Androlikou gorge ca. 2 km to SW [5], 26 March 2005: det. 1 ind.; - Troodos, Troodos Forest ca. 3 km to W [6], Hadjipavlou Mine (Fig. 16), 14 October 2005: net. 1 ma , obs. \& det. 3-4 inds. - N orthern Cyprus: Afendrika [7], ruins near the Panagia Chrysiotissa church, 17 October 2005: net. 1 ma (NMP 91235 [S+A]); - Çınarlı, Inçirli cave ca. 4 km to SE [8], 6 April 2005: det. 1 ind., 17 April 2005: net. 1 ma (NMP 90425 [S+A]); 15 October 2005: net. 1 ma (NMP 91234 [S+A]); - Sourp Magar Ermeni Manastiri [9], monastery ruins, 26 July 2006: obs. 1 ind. - Published data: S o uthern C y p rus: Akamas peninsula [cf. 4], cave, March 1989: obs. 1 ind. (Boye et al. 1990), May 1990: caught 1 m (Boye et al. 1990); - Pano Panayia [= Panagia] [10], a cave near, 1988: 1 ind. (skeleton) (Boye et al. 1990), 10 December 1989: obs. 1 ind. (Boye et al. 1990), May 1990: obs. 1 ind. (Boye et al. 1990). - C y prus: Cyprus, 1 ind. [Lord Lilford coll.] +1 ind. (Bate 1903) $=$ Cyprus, 2 inds. (Andersen 1905).

Comments. Rhinolophus ferrumequinum ranks among the most common bat species in Cyprus, at least 10 record sites are known throughout the island (Fig. 9). The altitude range of records

Fig. 9. Records of Rhinolophus ferrumequinum (Schreber, 1774) in Cyprus.

Fig. 10. Entrance to the upper gallery of an abandoned mine in the Troodos Forest, ca. 5 km southwest of Kakopetria, at ca. 1665 m a. s. 1. Record site of one of the richest bat communities in Cyprus; Rhinolophus ferrumequinum, R. hipposideros, R. blasii, Myotis nattereri, M. emarginatus, Hypsugo savii, and Plecotus kolombatovici were netted at the entrance and the call of Pipistrellus pipistrellus s.str. was recorded in the near surroundings (photo by Z. Bendová).
covers all parts of Cyprus (25-1665 m a. s. 1.; mean 606 m); R.ferrumequinum seems to occur in all island's habitats including dry coastal areas and forested mountains, similarly as in other parts of its Mediterranean range (see e.g., Hanák et al. 2001, Benda et al. 2003b, 2006).

Most of the records are related to underground roosts, where the bats were collected or observed (8 records) or were netted or detected at roost entrances (9). Exceptions include a male netted at the ruined church of Panagia Chrysiotissa, the observation of a bat in the ruined Armenian monastery of Sourp Magar (both in northern Cyprus), and a detector record above a reservoir at Apsiou. Despite the high number of records from underground, only two of them relate possibly to nursery colonies (from mines at Kakopetria [2] and at Kalavasos [3]; Figs. 10, 11).

External and cranial dimensions of the examined Cypriot specimens of R.ferrumequinum are shown in Appendix III. According to skull size, the Cypriot populations of R. ferrumequinum belong to the large Mediterranean form, assigned to the nominotypical subspecies (see the review and analysis by Benda et al. 2006). This conclusion only partly conforms to preliminary results of molecular genetic analysis (Kůs et al. in prep.). Most of the Cypriot samples (originating in western, central and southern parts of the island) show close relations to the bats from Crete and

Fig. 11. Entrance to an abandoned mine ca. 3 km northwest of Kalavasos; record site of Rhinolophus ferrumequinum, R. blasii, Pipistrellus kuhlii, and Miniopterus schreibersii (this review) and most probably a record site of nursery colonies of Rhinolophus hipposideros and Myotis emarginatus mentioned by Heller et al. (2001) (photo by Z. Bendová).
continental Europe (Balkans, Central Europe), while others (from two sites in the north-eastern corner of Cyprus) to the Middle Eastern populations (E Turkey, Levant and Iran). Since the European and Middle Eastern clades were genetically slightly divergent (minimum about 1\%), these results suggest at least two colonisation events to the island from mainland bats, possibly of different geographic origins. At the same time, the taxonomic division of the eastern Mediterranean populations of R. ferrumequinum based on skull size and pelage coloration (see DeBlase 1980, Benda et al. 2006 for reviews) do not seem to reflect the evolutionary history of the species.

Rhinolophus hipposideros (Borkhausen, 1797)

Records. Original data: Southern Cy prus: Kakopetria, Troodos Forest, abandoned mine 4.5 km to SW [1], middle gallery, 29 March 2005: coll. 1 ma (NMP 91263 [A]); - Kakopetria, Troodos Forest, abandoned mine 5 km to SW [2], upper gallery (Fig. 10), 13 October 2005: net. $2 \mathrm{ma}, 1 \mathrm{fa}, 2 \mathrm{fs} / \mathrm{j}$, det. ca. 8 ind. around the mine entrance; 14 October 2005: net. 1 ms (NMP 91229 [A]); 27 July 2006: net. $3 \mathrm{ma}, 1 \mathrm{~ms} / \mathrm{j}, 2 \mathrm{fa}, 1 \mathrm{fs} / \mathrm{j}$ (coll. 6 inds., NMP 90924-90928 [S+A], 90923 [A]); - Neo Horio, Smigies Trail ca. 3 km to NW [3], abandoned chromite mine system 'Magnesia Mine', 27 March 2005: coll. $2 \mathrm{ma}, 2 \mathrm{~ms}, 2$ fs (NMP 91247, $91821-91825$ [A]); 12 October 2005: det. 1 ind.; 21 July 2006: obs. \& det. 1 flying ind. in the mine; - Troodos, Troodos Forest, abandoned chromite mine 1.5 km to N [4], 29 March 2005: coll. 3 ma (NMP

91261, 91262, 91827 [A]); 13 October 2005: net. $1 \mathrm{ma}, 1 \mathrm{~ms}$; - Troodos, Troodos Forest ca. 3 km to W [5], Hadjipavlou mine (Fig. 16), 14 October 2005: net. 1 fs, det. 1-2 inds. - N orther n C y prus: Çınarlı, Inçirli cave ca. 4 km to SE [6], 6 April 2005: net. $1 \mathrm{ma}, 1 \mathrm{~ms}$ (NMP 91269 [S+A], 91270 [A]), det. 1 ind.; 17 April 2005: net. 1 ma (NMP 90424 [S+A]) and det. 2 inds. at a front of the cave, 1 ind. obs. inside the cave; 15 October 2005: net. $1 \mathrm{fs} / \mathrm{j}$ (NMP 91830 [A]), det. 1 ind. in an orchard behind the cave ridge; - Hagios Epittito (Cipro) [= Agios Epiktitos] [7], 15 January 1899: 1 ma (MSNF 9136 [S+A]; leg. Cecconi); - Trikomo (Cipro) [8], 10 January 1899: 1 ma (MSNF 9135 [S+A]; leg. Cecconi). - C yprus: Cipro [= Cyprus], $1 \mathrm{~ms}, 3$ fs (MSNF 9131-9134 [S+A]). - Published data: Southern Cyprus: Akamas peninsula [cf. 3], cave, obs. 1 ind. (Boye et al. 1990); 1 ind. found dead in a bush (Boye et al. 1990); - Kavasos [?= Kalavasos] [9] (Larnaca/Limasol), mine (cf. Fig. 11), 25 April 2001: 7 m, 3 f, 1 ind. (Heller et al. 2001); - Limassol [= Lemesos], a cave to N [10], 26 March 1989: obs. colony of 29 inds. (Boye et al. 1990); - Lythrodhonda [= Lythrodontas], Kloster des Propheten Elias [= Moni Profiti Ilia] [11], abandoned monastery (Nicosia), 18 May 1972: nurs. colony of ca. 12 f (Spitzenberger 1979); - Pano Lefkara [12], greater vicinity, June 1988: obs. colony of 70-100 inds. [20-25 fa with youngs] (Boye et al. 1990); - Prastiou [= Prastio] [13], mine, 31 March 1973 (Spitzenberger 1979; - Stavros tis Psokas [14], old house, 1987: small colony of 8 inds. [species identification unclear] (Reinhold 1987, in litt.). - N ort hern C y prus: Lounata Springs [15], half-cave (Kyrenia), 24 March 1973: 1 ind. (NMW 23473 [Sk]) (Spitzenberger 1979); - Palea [= Palaia] Vrysi [16], small fissure cave (Kyrenia), 24 March 1973: $5 \mathrm{~m}, 1$ ind. (coll. 3 m , NMW 23470-23472 [S+B]) (Spitzenberger 1979). - C y p ru s: Cipro [= Cyprus], 1 ind. (Doria 1887); - Cyprus; common, found in caves (Bate 1903) ?= Cyprus, 6 inds. (Andersen 1905) $=5$ f, 1 m (Andersen 1907); - Zypern [$=$ Cyprus], before 1858, 1 ind. (Bauer in Spitzenberger 1979).

Comments. According to the number and distribution of records, Rhinolophus hipposideros is the most widespread bat species and the third most frequently recorded bat in Cyprus (Table 1). At least 15 detailed record sites, covering wide range of altitudes (ca. 26-1665 m a. s. 1.; mean 650 m), are known from all parts of the island (Fig. 12). Already Bate (1903) reported R. hipposideros as common in Cyprus. The first note on this species from the island was published by

Fig. 12. Records of Rhinolophus hipposideros (Borkhausein, 1797) in Cyprus.

Doria (1887), although a probably older record made before 1859 was mentioned by Bauer (in Spitzenberger 1979)*.

With the exception of a colony located in the ruined monastery of Elias the Prophet (Spitzenberger 1979), all records come from underground roosts (caves or mines), where the bats were observed (8 records) or netted/detected at their entrances (17) (Figs. 7, 10, 16). At least six record sites could be considered maternity roosts according to direct observations of colonies with young or to the reproductive status of examined individuals (see Records).

Andersen (1918) and later Bauer (in Spitzenberger 1979) revised the taxonomic status of the Cypriot populations of R. hipposideros; both analyses showed them to belong to R. h. midas Andersen, 1905, a subspecies described from Jask in the Persian Gulf (Iran). These conclusions based mostly on skull morphology were compatible with preliminary results of molecular genetic analysis (Kůs et al. in prep.). They showed the Cypriot samples to be very close to those of the Levant, and this common Cypriot-Levantine clade was sister to the European-Cretan clade (at about 3% of genetic distance). This result placed the Cypriot populations of R. hipposideros into close proximity of the Middle Eastern ones. This pattern is distinct from that found in R.ferrumequinum, where an affinity to Cretan and European populations was detected, see above (although a smaller sample was available for analysis than in R. hipposideros). External and cranial dimensions of the examined Cypriot specimens of R. hipposideros are shown in Appendix III.

Rhinolophus euryale Blasius, 1853

Records. Published data: S o uthern Cyprus: Limassol [= Lemesos], a cave to N, 26 March 1989: visual obs. 1 m , 1 ind. (Boye et al. 1990). - C y p r u s: Cyprus (Theodor 1967).

Comments. Harrison (1964: 88) in his map of the distribution of Rhinolophus euryale in Arabia mentioned also a point in Cyprus, however, without giving an exact locality or any source of this information and moreover, he did not include Cyprus in the species' general distribution (p. 90). DeBlase (1972:7) summarised the situation as follows: "Harrison $(1964,88)$ mapped R. euryale from Cyprus but provided no data to substantiate this dot. I have found no other reference to either of these species on Cyprus and have not seen no specimens from this island." DeBlase (1972) and also Spitzenberger (1979) overlooked the record by Theodor (1967), who, however, might have mentioned the same individual, referred in the map by Harrison (1964). On the other hand, since Harrison (1964) did not report R. mehelyi from Arabia, he might have actually referred to this closely related species from Cyprus instead of R. euryale, based on the imprecise reports by Kahmann \& Çağlar (1959, 1960), see below.

Anyway, the first record of R. euryale in its contemporary sense from Cyprus was reported by Boye et al. (1990). They observed two individuals in a cave inhabited by colonies of other bat

[^1]species (Rhinolophus hipposideros, Miniopterus schreibersii and perhaps other rhinolophids), however, did not give any measurements or other data to support this record. Although the presence of R. euryale is well possible in Cyprus, taking into account its distribution in the surrounding Levantine countries (Hasbenli 1997, Benda \& Horáček 1998, Benda et al. 2006, Shehab et al. 2007), the record based only on visual observation could well be misidentified. However, Kryštufek \& Vohralík (2001) accepted the record by Boye et al. (1990) without any doubts.

DeBlase (1972) and Benda et al. (2006) documented a number of primarily erroneously determined records of medium-sized horseshoe bats from the Middle East, including the type series of the name Euryalus judaicus Andersen et Matschie, 1904, described from Palestine. This name was for a long time considered a synonym of R. euryale (e.g. Ellerman \& Morrison-Scott 1951, Csorba et al. 2003, Simmons 2005, etc.) and suggested to classify the East Mediterranean populations of this bat as a valid subspecies (for details see Benda et al. 2006: 71-75), but later it was shown to be a synonym of R. mehelyi. As pointed out by Felten et al. (1977) and Benda et al. (2006), representatives of the Levantine populations of R. euryale and R. mehelyi are smaller than those of the European ones, and an average sized R. mehelyi from the Levant only slightly oversizes in its external measurements the typical R. euryale. On the other hand, according to a simple comparison of several skull dimensions and characters, the correct species determination is well possible (Benda et al. 2006: 66-71).

Since R. mehelyi is the only species of the sibling pair of horseshoe bats which has been confirmed to occur in Cyprus (see Felten et al. 1977), we consider the Cypriot distribution of R. euryale only tentative, until it is confirmed by an undoubted revision of a skeletal material.

Rhinolophus mehelyi Matschie, 1901

Abstract

Records. Published data: Northern Cy prus: Kyrenia, 1 ind. (SKM 2808) (Felten et al. 1977). - C y prus: [Cyprus] point in a map, without any details (Kahmann \& Çağlar 1959); - 'Insel Cypern [= Cyprus] (Kahmann, unveröff.)' (Kahmann \& Çağlar 1960).

Comments. Rhinolophus mehelyi was for the first time reported to occur in Cyprus by Kahmann \& Çağlar (1959, 1960). These non-specific reports were accepted by DeBlase (1972: 7) in his revision of distribution of R. mehelyi in the Middle East: "Kahmann \& Çağlar (1960) mentioned the occurrence of R. mehelyi on Cyprus and mapped a locality for this species on that island. [...] No measurements or description are provided but I have no reason to doubt Kahmann's identification." The correct determination of the Kahmann's record was later verified by Felten et al. (1977) who published also the collection site of the revised specimen. However, this individual remains the only representative of R. mehelyi reported from the island and thus, the actual extent of the species' distribution in Cyprus should be specified by further research (see also the comments on R. euryale).

Rhinolophus blasii Peters, 1866

Records. Original data: S outhern C y prus: Kakopetria, Troodos Forest, abandoned mine 5 km to SW [1], upper gallery (Fig. 10), 27 July 2006: net. 2 fa (NMP 90929, 90930 [S+A]); - Kalavasos, abandoned mine ca. 3 km to NW [2; Fig. 11], 19 April 2005: net. 1 ma (NMP 90433 [S+A]); 28 July 2006: obs. \& det. 1 ind. - N or r her n C y p r u s: Фамагуста [Famagusta] [3], о. Кипр [o. Kipr = island of Cyprus], 1875: 1 fa (ZIN 5945 [A], leg. H. Rolle). - Published data: S outhern Cyprus: Lekara [?= Lefkara] [4], Cyprus, April 1894: 4 fa (BMNH 94.12.1.1.- 94.12.1.4. [S+A]; presented by Lord Lilford) (Andersen 1906, cf. Bate 1903); - Paphos [= Pafos] district [5], cave, 12 March 1989: 3 inds. (Boye et al. 1990), 22 March 1989: 8 or more inds. (Boye et al. 1990), December 1989: 1 ind. (Boye et al. 1990); - Paphos [$=$ Pafos] district [6], other cave, March and December 1989: colony of more than 100 inds. (Boye et al. 1990), May

Fig. 13. Records of Rhinolophus blasii Peters, 1866 in Cyprus.

1990: colony of 180-200 inds. (Boye et al. 1990); - between Pyla and Troulli [= Troulloi] [7] (Larnaca), January-July 1977: 2 m (NMW 23381, 23382 [S+B]; leg. K. Kollnberger) (Spitzenberger 1979). - N orthern Cyprus: Kyrenia [8], 1 ind. (SKM 2810) (Felten et al. 1977). - C y p r u s: isola di Cipro [= Cyprus], 1 es. [MSNF] (Lanza 1959); - Insel Cypern [= Cyprus] (as R. clivosus) (Fitzinger 1870); - Cyprus, 5 inds. (Sanborn \& Hoogstraal 1953).

Comments. Rhinolophus blasii is one of the more frequently recorded bat species and the most commonly recorded medium-sized horseshoe bat in Cyprus (see Table 1), 11 records are available from the island, eight of them being precisely localised (Fig. 13). Similarly as in other more frequently found rhinolophids (R.ferrumequinum, R. hipposideros), records of R. blasii cover all parts and altitudes of Cyprus; the findings come from the range of $15-1665 \mathrm{~m}$ a. s. 1 . However, the mean altitude of 386 m rather suggests a preference of lower situated localities. All detailed records are connected with underground spaces. The Cypriot occurrence of R. blasii extends its documented Levantine distribution in the belt from southern Turkey to northern Israel (Benda \& Horáček 1998, Benda et al. 2006, our unpubl. data from Lebanon) as well as the Balkans and Crete (Hanák et al. 2001). External and cranial dimensions of the examined Cypriot specimens of R. blasii are shown in Appendix III.

Myotis blythii (Tomes, 1857)

Records. Original data: S outhern C y prus: Kakopetria, Troodos Forest, abandoned mine 4 km to SW [1], lower gallery (Fig. 38), 15 October 2005: coll. 1 ms (NMP 91230 [S+A]). - Northern Cyprus: Çınarlı, Inçirli cave ca. 4 km to SE [2], 17 April 2005: net. 1 ma (NMP 90426 [S+A]). - Published data: Southern C y prus: between Pyla

Comments. Myotis blythii is a rather rare bat species in Cyprus, with only four accurately identified records available. Although scarce, the records of M. blythii come from all parts of Cyprus (Fig. 14), including lowland and higher mountain sites, with the approximate altitude range of $120-1500 \mathrm{~m}$ a. s. 1 . (mean 791 m). All three more precisely described records come from underground spaces (two caves and a mine).

Unger \& Kotschy (1865) reported an occurrence of Vespertilio murinus Schreb[er]. (= Vespertilio myotis Borkhausen, 1797 [$=$ Myotis myotis]) from Cyprus, however, they did not give any details on the record/s and no museum specimens are available in their collection (Spitzenberger 1979). As they mentioned only two bat species (incl. R. aegyptiacus), the name V. murinus could denote any species of a mouse-like insectivorous bat. However, Bate (1903:342) mentioned under Myotis myotis: "This species is included in Unger and Kotschy's list under the name of Vespertilio murinus Schreb., but was not amongst those I procured.", i.e., she accepted the species identification (as the species M. blythii was not commonly distinguished from M. myotis at that time). Strelkov (1972) suggested occurrence of M. blythii in Cyprus that was, however, confirmed first by Spitzenberger (1979).

Spitzenberger (1979) also identified the subspecies to which the Cypriot population pertains, M. blythii omari Thomas, 1905. This form commonly occurs in all surrounding mainland areas (Spitzenberger 1996, Benda et al. 2006). Our specimens fit well by their skull size into the variation range of M. b. omari from the Middle East; external and cranial dimensions of these specimens are shown in Appendix III (see the comparison by Benda et al. 2006).

Fig. 14. Records of Myotis blythii (Tomes, 1857) in Cyprus.

Myotis nattereri (Kuhl, 1817)

Records. Original data: S o u thern C y p ru s: Agios Nikolaos, Diarizos river ca. 3 km to N, Kelefou bridge [1; Fig. 24], 16 April 2005: det. 2 inds.; - Apliç, inflow of the Setrahos river into a dam ca. 4 km to S [2], 15 April 2005: net. 1 fa (NMP 90418 [S+A]); - Kakopetria, Troodos Forest, abandoned mine 5 km to SW [3], upper gallery (Fig. 10), 13 October 2005: net. 1 ms (NMP 91208 [S+A]); 14 October 2005: net. 1 ma, 2 ms (NMP 91226 [S+A], 91227 [A]); - Kakopetria, Troodos Forest, abandoned mine 4 km to SW [4], lower gallery (Fig. 38), 15 October 2005: coll. 1 fs (NMP 91231 [A]); - Neo Horio, Smigies Trail ca. 3 km to NW [5], abandoned chromite mine system 'Magnesia Mine', 27 March 2005: net. 2 ma (NMP 91251, 91252 [S+A]); - Troodos, Troodos Forest, abandoned chromite mine 1.5 km to N [6], 13 October 2005: net. $2 \mathrm{ma}, 2 \mathrm{~ms}, 4$ fs (NMP 91213-91217 [S+A], 91211, 91212, 91218 [A]); - Troodos, Troodos Forest 3 km to W [7], Hadjipavlou mine (Fig. 16), 14 October 2005: net. 3 ms (coll. 2 inds., NMP 91222 [S+A], 91221 [A]), obs. \& det. ca. 2-3 inds. - Northern Cy prus: Çınarlı, Inçirli cave ca. 4 km to SE [8], 6 April 2005: net. 3 faG (NMP 91272, 91273 [S+A], 91271 [A]); 17 April 2005: net. 4 fa (NMP 90429, 90430 [S+A], 90427,90428 [A]); 15 October 2005: net. $1 \mathrm{~ms}, 1 \mathrm{fs}$ (NMP 91232, 91233 [S+A]), det. 1 ind.; - Kantara, Kantara castle ruins 3 km to NE [9; Fig. 18], 16 October 2005: net. 1 ma. - Published data: Southern C y prus: Akamas [cf. 5], cave, May 1990: 1 ind. (Boye et al. 1990); - Pano Panayia [= Pano Panagia] [10], cave (Paphos), 1 m (Boye et al. 1990); - Paphos [= Pafos] district [11], cave, May 1990: 2 f, 1 ind. (Boye et al. 1990).

Comments. Although Myotis nattereri has been discovered to inhabit Cyprus relatively recently (Boye et al. 1990), according to our experience, it represents one of the most widespread bats of the island. Altogether, it has been recorded at least at 11 sites, covering all parts and altitudes of the island (Fig. 15). The altitude range of the record sites is $240-1665 \mathrm{~m}$ a. s. 1. (mean 855 m), which suggests a general use of the island's habitats. Netting data prevail in our original records, with one finding of a torpid individual in a mine. Individuals of M. nattereri were netted only during spring and autumn, mostly at entrances of abandoned mines (e.g., Hadjipavlou mine, see

Fig. 15. Records of Myotis nattereri (Kuhl, 1817) in Cyprus.

Fig. 16. Entrance to the abandoned Hadjipavlou mine in the Troodos Forest 3 km west of Troodos, at ca. 1630 m a. s. 1 . (the picture was made on 5 April 2005; photo by I. Horáček). A rich bat community was found there on 14 October 2005; Rhinolophus ferrumequinum, R. hipposideros, Myotis nattereri, Eptesicus serotinus, Hypsugo savii, and Plecotus kolombatovici were netted and calls of Pipistrellus kuhlii and Tadarida teniotis recorded.

Fig. 16) plus one cave entrance, once above a water stream and once in ruins of a mediaeval castle. At the entrance of the Inçirli cave, we netted three females of M. nattereri in a high stage of pregnancy, during their evening emergence from the cave. This record suggests the use of caves as roosts even by nursery colonies of this species in Cyprus.

The occurrence of M. nattereri in Cyprus well extends its distribution along the coast of the Levantine Sea from SW Turkey to Israel (see the review by Benda et al. 2006: 112), representing a slightly isolated part of its distribution range. External and cranial dimensions of the Cypriot specimens of M. nattereri are shown in Appendix III.

Myotis emarginatus (Geoffroy, 1806)

Records. Original data: S outhern Cyprus: Kakopetria, Troodos Forest, abandoned mine 5 km to SW [1], upper gallery (Fig. 10), 29 March 2005: coll. 1 fs (NMP 91264 [S+A]), 11 April 2005: coll. 2 fa (NMP 90400, 90401 [S+A]);

13 October 2005: det. 1 ind.; 27 July 2006: net. 8 ma (coll. 6 inds., NMP 90931-90935 [S+A], 90936 [A]); - Published data: S outhern Cyprus: Kavasos [?= Kalavasos] [2] (Larnaca/Limasol), mine (cf. Fig. 11), 25 April 2001: net. 13 f ("many animals obviously pregnant"), 1 ind. (Heller et al. 2001).

Comments. Since Myotis emarginatus has been reported only from two sites, it represents one of the rarest bat species of Cyprus. However, the bat was recorded four times at one of these sites, an abandoned mine in the Troodos Forest at 1665 m a . s. l. (Fig. 10); it was twice evidenced to forage at the entrance (once a larger group was netted) and twice it was found torpid inside this mine (a straight gallery, ca. 50 m long). The only previous Cypriot record by Heller et al. (2001) was also obtained by netting at mine entrance (at ca. $130 \mathrm{~m} \mathrm{a}. \mathrm{s}. \mathrm{l.;} \mathrm{Fig}. \mathrm{11)}, \mathrm{however} ,\mathrm{it} \mathrm{undoub-}$ tedly represented a record of a nursery colony. External and cranial dimensions of the Cypriot specimens of M. emarginatus are shown in Appendix III.

Myotis capaccinii (Bonaparte, 1837)

Records. Published data: N or ther n C y prus: Kyrenia, 19 May 1960: 1 ind. (SKM 2809; leg. H. Kahmann) (Kock 1974). - C y p ru s: Kıbrıs [= Cyprus], without any close details (Kahmann \& Çağlar 1959) = "Cypern [= Cyprus] (Kahmann, unveröff.)" (Kahmann \& Çağlar 1960).

Comments. Harrison (1964: 130) in his map of the distribution of Myotis capaccinii in Arabia mentioned also a record in Cyprus. He reported Cyprus among countries covering the range of this species, but did not give an exact locality or any information source. However, this mention undoubtedly reflected indirect reports of M. capaccinii from Cyprus by Kahmann \& Çağlar (1959, 1960) as Spitzenberger (1979) already suggested. The Kahmann's \& Çağlar's reports could be most probably based on the specimen labelled to be originating from Cyprus and published by Kock (1974) (see also comments by Kock 1974 and Boye et al. 1990).

The occurrence of M. capaccinii in Cyprus can be considered likely since the species is present in the mainland regions neighbouring to Cyprus, i.e. in southwestern Turkey and the Levant (Karataş et al. 2003a, Benda et al. 2006, Shehab et al. 2007). Nevertheless, the Kahmann's record seems to be rather doubtful for two reasons; (1) its first indirect mention, the paper by Kahmann \& Çağlar (1959), was issued a year before the Kahmann's finding of this bat in Cyprus (although it could be theoretically based on a different older record), and (2) according to the data by Kock (1974) and Felten et al. (1977), the respective bat should have been collected at Kyrenia on 19 May 1960, i.e. two days before other two individuals of M. capaccinii were collected in Crete (Piskokefalo, 21 May 1960; Kock 1974, cf. Kahmann \& Çağlar 1959, 1960). As there was no direct flight connection between Cyprus and Crete in the 1960s, the combined flight and/or ship and car transport between Kyrenia and Piskokefalo undoubtedly required more than two days. M. capaccinii is a bat species confirmed to occur in Crete (Gefyra Petre near Dramia, 1 fa , NMP 91093, 6 October 2006, our unpubl. data), and thus, the record from Cyprus seems to be rather doubtful under these circumstances (some other published faunal data by H. Kahmann had been considered doubtful too*, giving support to our preliminary conclusion). On the other hand, these discrepancies could be caused also by erroneous publication of the collection dates (Kock 1974), however, this possibility was excluded by D. Kock (ad verb.).

[^2]Hadjisterkotis (2006) discussed a possible extinction of M. capaccinii in Cyprus, arguing by the lack of recent records. However, such absence of records could be caused by a primary absence of this bat on the island as suggested by the above analysis of the only known record. Although we cannot exclude a possibility that M. capaccinii really occurs in Cyprus, this occurrence needs to be confirmed. Despite our relatively extensive research in Cyprus (netting and detecting at cave entrances and above water bodies as well as checks of underground spaces in various seasons), we did not record any evidence of this conspicuous trawling bat on the island.

Eptesicus serotinus (Schreber, 1774)

Records. Original data: S o uthern C y prus: Agios Nikolaos, Diarizos river ca. 3 km to N, Kelefou bridge [1; Fig. 24], 16 April 2005: det. 1 ind.; - Troodos, Kryos river ca. 2 km to SW [2], upper end of the Kalidonia Trail (Fig. 25), 13 April 2005: net. 1 ma (NMP 90409 [S+A]); - Troodos, Troodos Forest, at an abandoned chromite mine 1.5 km to N [3], 13 October 2005: obs. \& det. 1 ind.; - Troodos, Troodos Forest ca. 3 km to W [4], Hadjipavlou mine (Fig. 16), 14 October 2005: net. 1 ma (NMP 91219 [S+A]); - N orthern Cyprus: Gazimağusa [5], citadel, 25 July 2006: obs. 5 inds. in vault fissures, coll. 1 fa (NMP 90919 [S+A]). - Published data: C y prus: Zypern [= Cyprus], without any closer site of finding, $1 \mathrm{mj}, 2 \mathrm{fj}$ (1 m , NMW 24029 [S+A]) (Spitzenberger 1979).

Comments. Eptesicus serotinus was for the first time reported from Cyprus by Spitzenberger (1979); she found three specimens in the collection of the Plant Protection Laboratory of the Ministry of Agriculture and Natural Resources in Lefkosia. Since at the time of Spitzenberger's visit, the island was not yet politically divided, the possible origin of these specimens might cover all parts of Cyprus.

Fig. 17. Records of Eptesicus serotinus (Schreber, 1774) (closed symbols) and E. anatolicus Felten, 1971 (open symbol) in Cyprus.

Fig. 18. Kantara castle ruins (3 km northeast of the Kantara village) at ca. 625 m a. s. 1., overlooking the Karpaz peninsula in northeastern Cyprus (view to the east). In the ruins, Myotis nattereri, Eptesicus anatolicus, Hypsugo savii, and Pipistrellus kuhlii were recorded (photo by I. Horáček).

Here, we present the first accurately localised records of E. serotinus from Cyprus; five such findings are available, including three voucher specimens (Fig. 17). The altitude range of the records is relatively wide, $15-1630 \mathrm{~m}$ a. s. l., however, the mean altitude (1034 m) rather suggests preference of higher locations. With an exception of one finding in synanthropic conditions (Gazimağusa citadel), the remaining bats were collected in the Troodos Mts at the altitude of around 1600 m a. s . 1. The record made in the citadel of Gazimağusa, represented by several bats found scattered throughout the ruin inside the town (one adult female examined) in the second half of July, suggests a find of a recently dispersed nursery colony. It conforms to the preference of synanthropic roosts known for this bat in other parts of its distribution range. Since the mountain records were adult males found in transient periods of the year, i.e. possible seasonal migrants, the island's habitats seem to be used by E. serotinus continually at all altitudes.

External and cranial dimensions of the examined Cypriot specimens of E. serotinus are shown in Appendix III. According to skull size, the Cypriot populations belong to the Levantine-Zagrosian form, tentatively named E. s. shiraziensis (Dobson, 1871), oversizing the nominotypical form from Europe and the northern part of Anatolia as well as the Maghrebian E. s. isabellinus (Temminck, 1840) and Central Asian E. s. turcomanus (Eversmann, 1840) (for details see the analysis by Benda et al. 2006).

Eptesicus anatolicus Felten, 1971

Records. Original data: N o r thern C y prus: Kantara, Kantara castle ruins 3 km to NE [1; Fig. 18], 25 July 2006: coll. 1 ma (NMP 90922 [S+A]).

Comments. We regard Eptesicus anatolicus a separate species, in accordance with the results of morphological and genetic analyses (Benda et al. 2006, Mayer et al. 2007). E. anatolicus is here reported from Cyprus for the first time; an adult male was netted in the Kantara castle ruins (625 m a. s. 1.; Fig. 18) on the eastern edge of the Bespparmak (= Pentadaktylos) range (Fig. 17). The occurrence of this species in Cyprus was well predictable, since E. anatolicus represents a rather common faunal element along the coast of the Levantine Sea from Rhodes (Greece) in west to Lebanon in southeast (Spitzenberger 1994, von Helversen 1998, Benda et al. 2006,
our unpubl. data). External and cranial dimensions of the Cypriot specimen of E. anatolicus are shown in Appendix III.

Hypsugo savii (Bonaparte, 1837)

Records. Original data: S outhern C y prus: Kakopetria, Troodos Forest, abandoned mine 5 km to SW [1], upper gallery (Fig. 10), 13 October 2005: net. 1 ma (NMP 91210 [S+A]); - Neo Horio, Petratis gorge ca. 4 km to E [2], 25 March 2005: det. 1 ind.; - Neo Horio, Smigies Trail ca. 3 km to NW [3], at the abandoned chromite mine system 'Magnesia Mine', 9 April 2005: det. 1 ind.; 12 October 2005: det. 2 inds. of cf. H. savii; - Prodromi, Androlikou gorge ca. 2 km to SW [4], 20 April 2005: det. min. 1 ind.; - Troodos, Kryos river ca. 2 km to SW [5], upper end of the Kalidonia Trail (Fig. 25), 13 April 2005: net. 1 ma (NMP 90410 [S+A]); - Troodos, Troodos Forest, at an abandoned chromite mine 1.5 km to N [6], 13 October 2005: det. 3-5 inds.; - Troodos, Troodos Forest ca. 3 km to W [7], Hadjipavlou mine (Fig. 16), 14 October 2005: net. 1 fa (NMP 91220 [S+A]), obs. \& det. ca. 3 inds.; - Troodos, Troodos Forest, small pools 3 km to NNW [8], 11 April 2005: net. 1 ma (NMP 90407 [S+A]). - N orthern C y prus: Kantara, Kantara castle ruins 3 km to NE [9; Fig. 18], 18 April 2005: coll. 1 ma (NMP 90431 [S+A]). - Published data: S outhern C y prus: Troodos Mts [cf. 1, 5-8], 9 July 1911: 1 ma (BMNH 11.12.16.2 [S+A]) (Harrison 1961, cf. Thomas in Spitzenberger 1979).

Comments. Although the first individual of Hypsugo savii in Cyprus was collected relatively early (July 1911; see Harrison 1961), it remained the only record of this bat from the island for almost a century (see Spitzenberger 1979, Boye et al. 1990). However, according to our experience, H. savii represents one of the most widespread bats in higher altitudes of Cyprus (Fig. 19); altogether ten sites of its occurrence have been recorded. The records come mostly from mountainous habitats of the island - mean altitude being 1206 m a. s. 1., although the record sites cover a relatively wide range of altitudes ($255-1770 \mathrm{~m}$). In our original records, detectoring (5 records) and

Fig. 19. Records of Hypsugo savii (Bonaparte, 1837) in Cyprus.
netting (4) data prevail, with only one finding of an individual in a day roost (a male was found in wall fissure of the mediaeval castle ruins of Kantara in the Beşparmak (= Pentadaktylos) Mts, 625 m a. s. 1.; Fig. 18). Calls and individuals of H. savii were recorded mostly in spring and autumn transient periods, the only summer record was published by Harrison (1961). (According to Spitzenberger 1979, this record was primarily published by Oldfield Thomas in the Annals of the Cyprus Natural History Society, but this report remained overlooked for a long time.) The preference of highland habitats by H. savii in Cyprus corresponds well to the known distribution of the Levantine populations (Benda et al. 2006); also in Asia Minor this bat represents a rather continental faunal element (Benda \& Horáček 1998). External and cranial dimensions of the examined Cypriot specimens of H. savii are shown in Appendix III.

Pipistrellus pipistrellus (Schreber, 1774)

Records. Original data: S outhern C y prus: Kakopetria, Troodos Forest, abandoned mine 5 km to SW [1], at the upper gallery (Fig. 10), 13 October 2005: det. 1-2 ind. [46-49 kHz]; - Troodos, Kryos river ca. 2 km to SW [3], upper end of the Kalidonia Trail (Fig. 25), 5 September 2000: net. 1 m (MHNG 1807.089 [S+A]).

Pipistrellus pipistrellus s. I.

Records. Original data: S outhern C y prus: Troodos, Kryos river ca. 2 km to SW [3], upper end of the Kalidonia Trail, 5 September 2000: net. $2 \mathrm{~m}, 1 \mathrm{f}$ (together with collected 3 m ; from which one 1807.089 was identified as P. pipistrellus, while other two 1807.090, 1807.091 as P. pygmaeus); 22 July 2006: net. 1 ind.

Comments. Pipistrellus pipistrellus s. str. is here reported from Cyprus for the first time; its identification has been confirmed by genetic analysis of the mitochondrial gene for cytochrome b (see Appendix II). The only individual was found among six bats of the P. pipistrellus group caught in 2000, two other males from this group were identified as P. pygmaeus, while another five bats of the latter species were netted at the same site five years later. In the whole catch of bats of this group from Cyprus, the only identified specimen of P.pipistrellus was found against 13 genetically determined specimens of P. pygmaeus (from three sites, a half of this number from the same site where P. pipistrelus was caught). It suggests that P. pipistrellus is a species with a lower population density in Cyprus than P. pygmaeus. However, the population of P. pipistrellus certainly persists on the island, since its echolocation calls were recorded in autumn 2005*.

Both sites of P. pipistrellus records in Cyprus lie in its highest mountainous parts (Fig. 20), at the altitudes of 1595 and 1665 m a. s. 1., respectively. These data suggest preference of higher situated and/or forested areas of Cyprus in this bat. The scarcity of findings of P. pipistrellus in Cyprus is quite surprising, since in the Mediterranean parts of the Levant this species is rather common (Benda et al. 2006, our unpubl. data from Lebanon) as well as the bats of the P. pipistrellus group in southwestern Turkey (Benda \& Horáček 1998, Karataş et al. 2004).

The single specimen of P. pipistrellus available from Cyprus does not generally differ in morphology (skull and tooth characters and sizes) from the conspecifics of the Middle East and/or Europe (see Figs. 21-23). External and cranial dimensions of this specimen are shown in Appendix III. The haplotype of this bat (first 402 bp of the mitochondrial gene for cytochrome b;

[^3]

Fig. 20. Records of bats of the Pipistrellus pipistrellus group in Cyprus.
for details see Benda et al. 2003a, 2004a, Hulva et al. 2004) clustered with other Middle Eastern haplotypes of P. pipistrellus, showing only one mutation distance from the P. pipistrellus haplotype described from Syria (Benda et al. 2003a). Therefore, it is well reasonable to suppose a very recent colonisation of Cyprus by this lineage from the Levant. This could be also supported by low abundance of P. pipistrellus found on the island - compared to more frequent records of P. pygmaeus, see below.

Pipistrellus pygmaeus (Leach, 1825)

Records. Original data: S outhern C y p rus: Agios Nikolaos, Diarizos river ca. 3 km to N, Kelefou bridge [2; Fig. 24], 16 April 2005: net. $1 \mathrm{ma}, 4 \mathrm{fa}$ (NMP 90419-90423 [S+A]); - Troodos, Kryos river ca. 2 km to SW [3], upper end of the Kalidonia Trail (Fig. 25), 5 September 2000: net. 2 m (MHNG 1807.090, 1807.091 [S+A]) (cf. Hanák et al. 2001, Stadelmann et al. 2004); 12 April 2005: $3 \mathrm{ma}, 1 \mathrm{~ms}$, 1 fs (NMP 90413-90417 [S+A]); - Troodos, Troodos Forest, small pools 3 km to NNW [4], 11 April 2005: net. 1 ma (NMP 90408 [S+A]).

Comments. The occurrence of Pipistrellus pygmaeus in Cyprus was already published by Hanák et al. (2001:315), who mentioned preliminarily results of their genetic analysis: "A single sequence analysed from Cyprus confirms the presence of P. pygmaeus there (Ruedi, unpubl. data)." This sole sequence was used in the genetic analysis by Stadelmann et al. (2004), who first mentioned basic reference data on the corresponding specimen: "Mt. Troodos, $34^{\circ} 91^{\prime} \mathrm{N}, 32^{\circ} 75^{\prime} \mathrm{E}$, (male, MNHG 1807.90)". Subsequently, the respective sequence and specimen were used in the analyses by Benda et al. (2004a) and Hulva et al. (2004). These reports refer to a male netted at the upper end of the Kalidonia Trail near Troodos on 5 September 2000.

Relatively numerous specimens of P.pygmaeus from Cyprus reported in the present paper come from forested and rather higher parts of the island (Fig. 20). All the collected bats were identified by the specific rapid PCR-based test described by Kaňuch et al. (2007). Although the records come from a broad altitudinal range ($425-1770 \mathrm{~m} \mathrm{a}. \mathrm{s}. \mathrm{l),}$.the mean altitude of 1263 m indicates preference of mountainous parts of Cyprus. The small group of four adult females and one male caught at Kelefou bridge suggests presence of a colony, as the bats were netted in a short period after sunset above a small stream inside dense forest where hollow trees as possible shelters were likely to occur. The presence of P. pygmaeus in Cyprus represents the easternmost spot within the Mediterranean distribution range of the species which covers mainly continental Europe (Mayer \& von Helversen 2001); connecting it with the only known records in northwestern Anatolia (Manyas Lake; Dietz et al. 2005) as well as in Greek Islands off the Anatolian shore (Lesvos and Rhodes; Hanák et al. 2001).

The Cypriot representatives of P. pygmaeus were found to differ markedly in some morphological characters from the examined European specimens. Although in the body size and external traits incl. the forearm length, the Cypriot samples conform to the European bats, they differ in the skull and tooth size and shape. Skulls of P. pygmaeus from Cyprus significantly oversize those of the European conspecifics, their size range rather resembles those of the examined P. pipistrellus samples (Fig. 21, Table 3). However, in the size of teeth and several tooth-rows the Cypriot samples of P. pygmaeus clearly oversize the examined European samples of P. pygmaeus, and in mean values also those of P. pipistrellus (Table 3, Figs. 22, 23). On the other hand, Cypriot samples of P. pygmaeus reach in tooth dimensions the values of the larger P. hanaki Hulva et

Fig. 21. Bivariate plot of the examined Cypriot and comparative samples of the Pipistrellus pipistrellus group: greatest length of the skull (LCr) against the length of the upper tooth-row $\left(\mathrm{CM}^{3}\right)$. The polygons denote clusters of the comparative samples as depicted in the legend.

Figs. 22, 23. Bivariate plots of the examined Cypriot and comparative samples of the Pipistrellus pipistrellus group. 22 (above) - length of the upper molar row ($\mathrm{M}^{1} \mathrm{M}^{3}$) against the rostral width across the upper canines (CC). 23 - (below) mesiodistal crown length of the upper canine (LCs) against the palatolabial width of the upper canine (LaCs).

Fig. 24. Kelefou bridge over the Diarizos river ca. 3 km north of Agios Nikolaos, the netting place of a possible colony of Pipistrellus pygmaeus; the calls of Myotis nattereri and Eptesicus serotinus were also recorded there (photo by Z. Bendová).

Benda, 2004, a sister species inhabiting Mediterranean parts of Cyrenaica, Libya (Benda et al. 2004a). In crown size of the upper canine, which was described to be significant for differentiation of P. hanaki from other species and populations of the group (Benda et al. 2004a), the Cypriot samples of P. pygmaeus constitute a dimensional transition between P. hanaki and other examined samples (Fig. 23). The Cypriot population of P. pygmaeus is thus the only known form of the P. pipistrellus group, which does not clearly differ in the skull and tooth traits from P. hanaki but partly overlaps it.

Two simple statistic tests clearly confirmed the significant differences existing between the Cypriot and European samples of P. pygmaeus in skull shape and size (Table 3). While the Cypriot samples are, on average, smaller in skull widths and heights (interorbital constriction, braincase dimensions), they are larger in longitudinal skull measures, mainly of tooth-rows. The most apparent difference between the two sets was proved in the crown size of upper canine. The distinction between these populations was also shown by a genetic analysis (Hulva et al. 2004); the examined individual of the Cypriot P. pygmaeus (MNHG 1807.090) exposed in a partial sequence of the mitochondrial gene for cytochrome b ($402 \mathrm{bp}, 5^{\prime}$ end) the genetic distance of $3.0-3.7 \%$ from the haplotypes of P. pygmaeus from Europe (both western and central parts of Europe as well as the Balkans) and $6.7-7.0 \%$ from other closer relatives of the clade, the

Cyrenaican P. hanaki (Hulva et al. 2004). The distance between European and Cypriot populations of P. pygmaeus represents 12-15 mutation steps, suggesting isolation of these lineages for about 1 Ma (Hulva et al. 2004).

However, although the Cypriot and European samples of P.pygmaeus differ in size, morphology and genetic traits, their echolocation calls are very similar, with the maximum energy of around 55 kHz in both populations (in Cyprus tentatively recorded using a heterodyning detector only).

To be summarised, the Cypriot populations of P. pygmaeus represent a geographically, morphologically and also genetically clearly distinct unit within the species rank. Therefore, we regard the Cypriot population of P. pygmaeus to represent a separate subspecies:

Pipistrellus pygmaeus cyprius Benda, subsp. nov.

Type material. Holotype: Adult male (NMP 90416 [S+A]) netted above the Kryos river near the upper end of the Kalidonia Trail, ca. 2 km to SW of Troodos, 12 April 2005, leg. P. Benda, V. Hanák \& I. Horáček. Paratypes (6): site as in the holotype, two adult males (MHNG 1807.090, 1807.091 [S+A]), 5 September 2000, leg. M. Ruedi, two adult males, one subadult male and one subadult female (NMP 90413-90415, 90417 [S+A]), 12 April 2005, leg. P. Benda, V. Hanák \& I. Horáček.
Comparative material. See the Appendix 1 by Benda et al. (2004a) and Appendix II by Benda et al. (2006).

Fig. 25. Kryos river ca. 2 km southwest of Troodos, ca. 100 m from the upper end of the Kalidonia Trail; the type locality of Pipistrellus pygmaeus cyprius subsp. nov. and the netting site of Eptesicus serotinus, Hypsugo savii, Pipistrellus pipistrellus, Nyctalus leisleri, and Plecotus kolombatovici. It is a site of the first record of three bat species in Cyprus (photo by Z. Bendová).

Table 3. Basic biometric data on the examined Cypriot and comparative samples of the Mediterranean populations of the Pipistrellus pipistrellus group and results of statistic tests comparing the European and Cypriot samples of P. pygmaeus. For abbreviations see p. 75; for the comparative material origin see Benda et al. (2004a, 2006)

Type locality. Republic of Cyprus, Troodos Mts; at the Kryos river near the upper end of the Kalidonia Trail, ca. 2 km to SW of Troodos (crossroads of mountainous roads), district of Lemesos, $34^{\circ} 55^{\prime} \mathrm{N}, 32^{\circ} 52^{\prime} \mathrm{E}$, ca. 1595 m a . s. l. (Fig. 25)

Description and diagnosis. Pipistrellus pygmaeus cyprius subsp. nov. is a small bat belonging to the Pipistrellus pipistrellus complex, in most its morphological and genetic characters conforming to the nominotypical subspecies of P. pygmaeus from continental Europe. P. p. cyprius subsp. nov. differs from P. p. pygmaeus by having a longer but relatively narrower and lower skull and more massive teeth, ranges of skull and tooth sizes only marginally overlap in the two subspecies (see Table 3). Within the species, the skull of P. p. cyprius subsp. nov. is on average large (LCr $11.4-12.4 \mathrm{~mm}$) but narrow (LaI 2.9-3.2 mm, LaN 5.8-6.3 mm) and low (ANc 3.9-4.3 mm), in size range similar to P. pipistrellus and reaching P. hanaki. The rostral part of the skull is on average rather long and wide $\left(\mathrm{CM}^{3} / \mathrm{LCr} 0.40-0.43 ; \mathrm{CC} / \mathrm{LCr} 0.30-0.32\right)$. Tooth-rows are long $\left(\mathrm{CM}^{3}\right.$ $4.0-4.4 \mathrm{~mm} ; \mathrm{CM}_{3} 4.3-4.8 \mathrm{~mm} ; \mathrm{CP}^{4} 1.8-2.1 \mathrm{~mm} ; \mathrm{CP}_{4} 1.4-1.7 \mathrm{~mm}$), significantly longer than in P. p. pygmaeus and similar to P. pipistrellus and/or to P. hanaki. Crowns of the upper canines are mesiodistally absolutely and relatively long and palatolabially rather broad (LCs $0.87-1.01 \mathrm{~mm}$; LaCs $0.68-0.80 \mathrm{~mm}$); the upper canines are in their mesiodistal lengths as long as in P. hanaki, but palatolabially narrower than in the latter species (LCs/LaCs 1.17-1.38; mean 1.25). Unicuspidal tooth-rows are long, on average longer than in P.p. pygmaeus, in absolute values in some cases even longer than in P. hanaki ($\mathrm{CP}^{4} 1.8-2.1 \mathrm{~mm}$; $\mathrm{CP}_{4} 1.4-1.7 \mathrm{~mm}$); mesiodistal length of the second upper premolar $\left(\mathrm{P}^{4}\right)$ crown is on average the largest within the P. pipistrellus species complex (1.01-1.29 mm; mean 1.15). Molars are very large, M^{1} is extremely wide (M^{1} mesiodistal length 1.01-1.24 mm, mean 1.15; palatolabial width $1.28-1.48 \mathrm{~mm}$, mean 1.38); molar-rows are on average similarly long as in P. hanaki, absolute values of some cases being even larger $\left(\mathrm{M}^{1} \mathrm{M}^{3} 2.7-3.0 \mathrm{~mm} ; \mathrm{M}_{1} \mathrm{M}_{3} 2.9-3.3 \mathrm{~mm}\right.$), and also significantly larger than in P. p. pygmaeus and on average also than in P. pipistrellus. For other dimensional points of the differential diagnosis see Table 3 and Figs. 21-23, for dimensions of the examined specimens of P. p. cyprius subsp. nov., including the type series, see Appendix III.

The glans penis in P. p. cyprius subsp. nov. has a medial stripe on dorsal side of praeputium covered by greyish-brown hairs (Fig. 26), creating in its shape a transition between the type present in P. pipistrellus and in P.p.pygmaeus (plus P. hanaki) as described by Häussler et al. (2000). In

Fig. 26. Penis of Pipistrellus pygmaeus cyprius subsp. nov. (photo by I. Horáček).
all examined specimens of P. p. cyprius subsp. nov., the venation of wing was of the P. pipistrellus type (von Helversen \& Holderied 2003: 424, Abb. 4 B). Echolocation calls of P.p. cyprius subsp. nov. have a maximum energy of the terminal frequency at about 55 kHz . According to the present knowledge, P. p. cyprius subsp. nov. seems to be geographically limited to Cyprus.

Complete sequence of the mitochondrial gene for cytochome b of a paratype (MNHG 1807.090; 1140 bp, NCBI Accession Number AJ504442; after Stadelmann et al. 2004): atg aca aac att cga aag tcc cat ccc cta atc aaa att att aac agc tca ttc att gac cta ccg act ccg tca aac att tca gca tga tgg aat ttt gga tcc tta tta gge atc tgt cta ggg ctg caa atc cta aca gge cta ttt ctt gct ata cac tac acg tca gac aca gca aca gce ttc age tct gtc acc cac atc tge cga gac gta aat tat gga tga gtc cta cga tat cta cac gca aac gga gec tca atg ttt ttt att tgc ata tat cta cac gta ggg cga ggt ctt tac tat ggg tcc tac tta ttt aaa gaa acc tga aat ata gga gtt att tta cta tte gct gta ata gca acg gcc ttc ata ggc tat gta tta cca tga ggc caa ata tcc ttt tga ggg gcc acc gtc att act aac cta ctc tcc gca atc cca tat att ggg acc aac ctt gtt gaa tga att tga gga gga ttt tct gta gac aaa gec acc tta acc cga ttc ttc gcc ttc cat ttt ctt ctc cce ttt att att tca get tta gtc atg gtt cac ctc tta ttt ta cat gaa aca ggg tet aat aac cca aca ggc atc cce tct aac ata gat ata att cce ttc cac cca tac tac aca atc aaa gac att ctg gga ctc ttt ata ata att ctt gcc cta ttg tct tta gtc cta ttt tea cct gat ata tta gge gac cce gat aac tac aca cca gca aat cca cta age act ccc ccc cac att aaa cca gaa tga tac ttc tta tts gca tac gca atc cta cga tca att cct aat aag cta gga gga gtc cta gec tta gtc ctt tcc atc ctc atc ctt gta att atc cce ttc ctc cac aca tcc aaa caa cga age atg act ttc cge cet ctc agt caa tgt tta ttc tga ctt tta gea gca gac ctt tta acc ttg aca tga atc gga gga caa cca gtt gaa cac cct tat gtt atc atc gge caa tta gec tet att cta tat ttt tta atc atc att gta atc ata cet ctg aca agc ctc ata gaa aat cac cta tta aaa tga aga.

According to Table 2 by Benda et al. (2004a: 205), partial sequence of the mitochondrial gene for cytochrome b ($402 \mathrm{bp}, 5^{\prime}$ end, haplotype CYP1) of the examined Cypriot specimen of P. p. cyprius subsp. nov. has unique mutations within the P. pygmaeus haplotype group at six positions (66: $\mathrm{A} \rightarrow \mathrm{G} ; 67: \mathrm{G} \rightarrow \mathrm{A} ; 72: \mathrm{A} \rightarrow \mathrm{G} ; 216: \mathrm{T} \rightarrow \mathrm{C} ; 267: \mathrm{A} \rightarrow \mathrm{G} ; 280: \mathrm{C} \rightarrow \mathrm{A}$), at one position it shares the same unique mutation with P. hanaki (106: $\mathrm{C} \rightarrow \mathrm{T}$), and at two positions with P. hanaki and P. pipistrellus (81: $\mathrm{C} \rightarrow \mathrm{T} ; 276: \mathrm{C} \rightarrow \mathrm{T}$).

Derivatio nominis. The name cyprius refers to the island of Cyprus, the only known area of distribution of P. p. cyprius subsp. nov.

Pipistrellus kuhlii (Kuhl, 1817)

Records. Original data: S outhern C y prus: Agia Napa [1], Karystos resort and the area westwards, 3 and 4 September 2000: det. 1-2 inds. (leg. J. Gaisler); - Agia Napa [2], monastery area and surroundings, 6 September 2000: det. numerous inds. (leg. J. Gaisler); - Apliç, ca. 4 km to S [3], inflow of the Setrachos river into a dam, 15 April 2005: det. min. 3 inds.; - Apsiou [4], irrigation reservoir, 30 March 2005: det. min. 1 ind.; - Kalavasos, around an entrance of an abandoned mine ca. 3 km to NW [5; Fig. 11], 28 July 2006: det. min. 5 inds.; - Kalavasos, Vasilikos river [6], 14 April 2005: net. 1 ma , det. min. 10 inds. (a colony); - Lemesos, touristic resort ca. 4 km to E [7], 27 March 2005: repeatedly det. min. 1 ind.; - Neo Horio, Petratis gorge ca. 4 km to E [8], 25 March 2005: det. min. 1 ind.; - Neo Horio, Smigies Trail ca. 3 km to NW [9], at the abandoned chromite mine system 'Magnesia Mine', 9 April 2005: det. 1 ind.; - Pano Lefkara, road bridge ca. 3 km to NW [10], below the Lefkara Dam, 12 April 2005: det. and obs. min. 10 inds.; 24 July 2006: det. min. 2+ inds.; - Paramytha [11], at a small cave above a road (Fig. 40), 31 March 2005: det. a colony; - Perivolia [12], 25 October 1990: 1 ma flew into a hotel room (NMP 90832 [S+B]; leg. J. Sklenář); - Prodromi, Androlikou gorge ca. 2 km to SW [13], 26 March 2005: det. 1 ind.; - Protaras [14], cave in a cliff above the village, 18 October 2005: net. 1 ms ; - Troodos, Troodos Forest ca. 3 km to W [15], Hadjipavlou mine (Fig. 16), 14 October 2005: det. 1 ind.; - Vretsia, Xeros river ca. 2 km to E [16; Fig. 31], 500 m to S of the Roudias bridge, 22 July 2006: det. 1 ind. - N orthern C y prus: Afendrika [17], ruins of the Panagia Chrysiotissa church and the Asomatos church, 17 October 2005: net. $7 \mathrm{ma}, 1 \mathrm{~ms}, 5 \mathrm{fa}, 2 \mathrm{fs}$ (coll. 7 m, 4 f, NMP 91238-91245 [S+A], 91236, 91237, 91246 [A]); ruins of the Panagia Chrysiotissa church (Fig. 27), 25 July 2006: obs. dispersed colony of min. 8 inds. in vault fissures, coll. $1 \mathrm{ma}, 1 \mathrm{fa}$ (NMP 90920, 90921 [S+A]); - Ayios Filon [18], basilica ruins (Fig. 28), 25 July 2006: 4 inds. in a vault fissure; - Beylerbeyi [19], Bellapais Abbey ruins, 27 July 2006: 8 inds. in vault fissures; - Kaleburnu [20], village, 18 April 2005: det. min. 2+ inds.; - Kantara, Kantara castle ruins

Figs. 27, 28. Roosts of colonies of Pipistrellus kuhlii (Kuhl, 1817) in northeastern Cyprus; both sites are relatively exposed to daylight (both photos by Z. Bendová). 27 (left) - ruins of the Panagia Chrysiotissa church at Afendrika; a dispersed colony was found in ceiling fissures throughout the southern side of the vault (at the right side of the picture). 28 (right) - ruined basilica of Ayios Filon; at least four individuals were observed in a fissure in the highest point of the ceiling vault above the head of the person.

3 km to NE [21; Fig. 18], 25 July 2006: det. min. 1 ind. - Published data: S outhern C y p r u s: Ayia Napa [= Agia Napa] [2], east of the town and at the harbour, March 1987: sightings (Boye et al. 1990); - Bath of Aphrodite [= Loutra tis Afroditis] [22], 1989 (Boye et al. 1990); - Larnaka [23], 1896, 1 ind. (MNS 2209; leg. Dr. Hesse) (Kock 1974); - Limassol [24] (Bequaert 1953, Theodor 1956); - Nicosia [= Lefkosia] [25] (Jordan 1942, Hopkins \& Rothschild 1956); - Paphos [= Pafos] [26], January 1987, March and December 1989: sightings (Boye et al. 1990); - Trimithousa [= Tremithousa] [27] (Paphos), April 1988: sightings (Boye et al. 1990). - N or ther n C y prus: near Akanthou, northern shore [28], 1 ind. (mummy) (Spitzenberger 1979); - Bellapais [19], monastery ruins, 9 August 1988: 1 ind. (Opstaele 1990); - Boghaz [= Bogazi] [29] (Famagusta), April 1990: sightings (Boye et al. 1990); - Famagusta, old town [30], columnes of Venice Palace, March 1989: colony (Boye et al. 1990); - Famagusta, old town [31], wall crevices and behind a board of a house near the old land gate, March 1989: colony (Boye et al. 1990); - Kyrenia [32], harbour, March 1989: sightings (Boye et al. 1990). - C y prus: Cyprus, 2 ind. [Lord Lilford coll.] (Günther 1879); - Cyprus, "commonest of the small bats; in June 1901 several were brought to me", incl. 1 faG (Bate 1903); - Cyprus (Theodor 1954, 1967, Theodor \& Moscona 1954); - Zypern [= Cyprus], without data, 1 ind. (Spitzenberger 1979).

Comments. Pipistrellus kuhlii is the second most often recorded bat species in Cyprus (after R. aegyptiacus, see above and Table 1); it also represents one of the oldest known bats occurring in the island, for the first time mentioned already by Günther (1879). At least 32 detailed record sites are known from Cyprus (Fig. 29), plus four not appropriately localised ones. Such abundance of P. kuhlii records well corresponds with the state of its occurrence known in the Levantine mainland (see the review by Benda et al. 2006). The records come mostly from lowland locations, although

Fig. 29. Records of Pipistrellus kuhlii (Kuhl, 1817) in Cyprus.
from a wide altitude range of $0-1630 \mathrm{~m}$ a. s. 1. (mean 148 m). Similarly as R. aegyptiacus, P. kuhlii seems to use the higher forested sites occasionally and to dwell more agricultural and rather dry lowland parts of the island. External and cranial dimensions of the examined Cypriot specimens of P. kuhlii are shown in Appendix III.

Nyctalus noctula (Schreber, 1774)

Records. Original data: S outhern C y prus: Troodos, Troodos Forest ca. 1.5 km to N, around an abandoned chromite mine, 13 October 2005: det. 1 ind. of cf. N. noctula. - Published data: S outhern Cyprus: Aphrodite's bath [= Loutra tis Afroditis], March 1988: calls of a Noctule bat, cf. N. noctula. - C y p r u s: Zypern [= Cyprus], 3 inds. (Spitzenberger 1979).

Comments. Spitzenberger (1979) mentioned three stuffed specimens of Nyctalus noctula from Cyprus, which she found in an exhibition of the "Municipal Natural History Museum in Limassol"; she noted them to be small and relatively dark. Boye et al. (1990) recorded a call of a noctule bat, however, they only tentatively assigned it to N. noctula. Similarly, our record of a call from the Troodos Mts, though it corresponded exactly to that of N. noctula of Europe (in the heterodyne mode at ca. $15-18 \mathrm{kHz}$) could be only tentatively affiliated to this species, because it was related to a single individual passing through. Moreover, the record might have been misidentified since the individual could also pertain to N. lasiopterus (see below), known to produce quite similar echolocation calls. When observed in flight individually, an unambiguous species determination
is impossible without simultaneous comparison with an individual of the other species (together with the use of a bat detector), enabling to assess the size difference properly.

As the records of N. noctula have been reported in the Mediterranean parts of all Levantine countries from Turkish Cilicia to the West Bank (Festa 1894, Lewis \& Harrison 1962, Osborn 1963, Harrison \& Makin 1988, Mendelssohn \& Yom-Tov 1999, Benda et al. 2006) and other species of the genus Nyctalus Bowdich, 1825 had not been previously known to occur in the eastern Mediterranean (see e.g. Kumerloeve 1975a, b), the interpretations of the records by Spitzenberger (1979) and Boye et al. (1990) seem to be fully understandable. However, N. noctula currently remains the only Nyctalus species which has been recorded in Cyprus only indirectly, as the call records were not completely convincing and the specimens were found in the public display where their origin can be only guessed. Exhibits of N. noctula of an unreliable origin, formerly sold by natural history traders, can cause confusion when assessing the composition of local fauna, see e.g. Kowalski \& Rzebik-Kowalska (1991) who described such case concerning the uncertain N. noctula records in Algeria and North Africa as well (see also Rasmussen \& Prŷs-Jones 2003 for a detailed review of some possible fates of collection specimens and their reliability).

On the other hand (when the Cypriot origin of the respective bats is accepted), as Spitzenberger (1979) did not give any measurements of the reported exhibits to support their identification, one can suppose her mentioned "wenig ansprechend gearbeiteten" specimens to assign to N. leisleri rather than to N. noctula. The former species is a smaller and darker representative of the genus and is certainly present in the island (see below). During our three visits of the 'Natural History Museum of Lemesos', a small exhibition in two rooms within the Municipal Zoological Garden of Lemesos (Horáček: April 2005; Benda \& Hanák: April 2005; Benda: July 2006), no Nyctalus specimen was present in the exhibition and available for a revision (from bats only one stuffed specimen of Pipistrellus kuhlii was observed).

Although the occurrence of N. noctula in Cyprus is well possible, taking into account its known Levantine range, we regard the records of this species in Cyprus rather tentative and its presence there in a need to be proved by a finding of an animal.

Nyctalus leisleri (Kuhl, 1817)

Records. Original data: S outhern Cy prus: Troodos, Kryos river ca. 2 km to SW [1], upper end of the Kalidonia Trail (Fig. 25), 13 April 2005: net. 1 ma, 1 fa (NMP 90411, 90412 [S+A]); 22 July 2006: net. 2 ma (NMP 90901, 90902 [S+A]); - Troodos, Troodos Forest ca. 1.5 km to $\mathrm{N}[2]$, around abandoned chromite mine, 13 October 2005: obs. \& det. $1-2$ inds.

Comments. Nyctalus leisleri is here reported from Cyprus for the first time. This bat was repeatedly netted at one site in a higher and densely forested part of the Troodos Mts (at 1595 m a . s. 1.) in spring and summer; in addition, its calls were recorded in autumn at a close site (at 1505 m a. s. 1.) (Fig. 30). Such temporal distribution of records could indicate permanent occurrence of this migratory species in the island's forests.

This finding represents the easternmost spot of the species occurrence in the Mediterranean s. str., the other nearest records are known from southwestern Anatolia (Köprü Irmağı gorge, N of Beşkonak; von Helversen 1989) as well as in Dodecannese Islands of Greece (Afandou, Rhodes; Hanák et al. 2001). Although the distribution range of N. leisleri continues from the Balkans via the forested Pontic Mts to the Caucasus and North Persian regions (DeBlase 1980, Benda \& Horáček 1998, Albayrak 2003, our unpubl. records), this bat has never been found in the Levant (Benda et al. 2006). External and cranial dimensions of the Cypriot specimens of N. leisleri are shown in Appendix III.

Fig. 30. Records of Nyctalus leisleri (Kuhl, 1817) (closed symbols) and Nyctalus lasiopterus (Schreber, 1780) (open symbol) in Cyprus.

Nyctalus lasiopterus (Schreber, 1780)

Records. Original data: S o uthern C y prus: Vretsia, Xeros river ca. 2 km to E [1], 500 m to S of the Roudias bridge, 22 July 2006: net. $1 \mathrm{~ms}, 4$ fa, 3 fs (coll. $1 \mathrm{~m}, 5$ f; NMP 90913-90916, 90918 [S+A], 90917 [A]).

Comments. Nyctalus lasiopterus is here reported from Cyprus for the first time. Similarly as in the previous species, its finding in Cyprus represents the easternmost spot of occurrence in the Mediterranean s. str. (Fig. 30). Despite the relative scarcity of its records throughout the range, the general pattern of distribution in the eastern Mediterranean is almost identical as in N. leisleri. Also in N. lasiopterus, the Cypriot record continues the only record in southwestern Turkey (Elmalı, Antalya Dist.; Yiğit et al. in press), while in northern Anatolia only two findings have been reported (Mustafa Kemal Paşa Dist., Kahmann \& Çağlar 1959, Kahmann 1962; Exploration Platform in the Black Sea 43 km off the Turkish shore near Findıklı, Karataş et al. 2007). However, similarly as in N. leisleri, N. lasiopterus inhabits the Balkans, Caucasus region and northern Iran as well as Cyrenaica, Libya (Ibáñez et al. 2004), but it has never been recorded in the Levant proper (Benda et al. 2006).

The finding in Cyprus is represented by netting of eight individuals in a riparian plane grove of the Xeros river valley (325 m a. s. 1., Fig. 31) in the area neighbouring the forests of the Troodos Mts. The catch was comprised of four adult females (two of them were still in the lactation phase) and four full-grown juveniles suggesting presence of a nursery colony (as the netting was performed in the second half of July, when nursery colonies are expected to be still persisting,
see Ibáñez et al. 2004) and thus, reproduction on the island. External and cranial dimensions of the Cypriot specimens of N. lasiopterus are shown in Appendix III.

Plecotus kolombatovici Đulić, 1980

Records. Original data: S outhern C y prus: Kakopetria, Troodos Forest, abandoned mine 5 km to SW [1], upper gallery (Fig. 10), 13 October 2005: net. 1 fs (NMP 91209 [S+A]); 14 October 2005: net. 1 fa (NMP 91228 [S+A]; Fig. 36); - Neo Horio, Smigies Trail ca. 3 km to NW [2], abandoned chromite mine system 'Magnesia Mine’, 9 April 2005: net. 1 ma (NMP 90398 [S+A]); - Troodos, Kryos river ca. 2 km SW [3], upper end of the Kalidonia Trail (Fig. 25), 22 July 2006: net. $2 \mathrm{ma}, 1 \mathrm{~ms}, 11 \mathrm{faL}, 1 \mathrm{fs}$ (coll. $3 \mathrm{~m}, 7 \mathrm{f}$; NMP 90903-90908, 90910,90911 [S+A], 90909, 90912 [A]); - Troodos, Troodos Forest ca. 3 km to W [4], Hadjipavlou mine (Fig. 16), 14 October 2005: net. $1 \mathrm{ma}, 1 \mathrm{fa}$ (NMP 91224 [S+A], 91223 [A]), det. 2 inds. - N orthern C y prus: Agırdağ [5], cleft cave, 5 April 2005: net. 1 fa (NMP 91268 [S+A]; Fig. 35). - C y prus: Cyprus (undef.), 1 ind. (J. Reinhold, in litt). - Published data: S outhern Cyprus: Akamas [cf. 2], cave, 5 May 1990: 1 m (Boye et al. 1990; as P. austriacus); - Troodos Mts [cf. 1, 3, 4], two caves, 19 June 1988: 4 inds., another cave, December 1989: 1 ind. (Boye et al. 1990; as Plecotus sp.).

Comments. Boye et al. (1990) were the first to report findings of bats of the genus Plecotus Gray, 1818 in Cyprus; they mentioned two forms to be found in the island, the 'typical' P. austriacus (Fischer, 1829) and a mountain population of Plecotus sp., without species identification. While

Fig. 31. Xeros river ca. 2 km east of Vretsia and ca. 500 m south of the Roudias bridge, the site where eight individuals of Nyctalus lasiopterus (Schreber, 1780) were netted (photo by Z. Bendová).

Fig. 32. Records of Plecotus kolombatovici Đulić, 1980 in Cyprus.
the name of the European bat P. austriacus used by Boye et al. (1990) could well correspond to P. kolombatovici in its contemporary sense*, as the latter form was formerly regarded a subspecies of P. austriacus in southeastern Europe (Đulić 1980, Horáček et al. 2000, Kiefer \& von Helversen 2004, Spitzenberger et al. 2001, 2006, etc.), the other form referred to Plecotus sp. suggested existence of an undescribed long-eared bat species, endemic for higher altitudes of the Troodos Mts (see the comments by Boye et al. 1990).

We recorded relatively numerous individuals of Plecotus kolombatovici at five sites throughout the island, including the Akamas peninsula and also in higher situated localities of the Troodos Mts (the altitude range being ca. $300-1665 \mathrm{~m}$ a. s. 1., mean 1080 m ; Fig. 32), i.e., in the same areas from which Boye et al. (1990) reported their two Plecotus forms. All examined Cypriot specimens created a homogenous group with relatively short forearms and thumbs (Table 4); the small thumb lengths indicated the P. austriacus species group (according to Spitzenberger et al. 2006) and excluded that the bats might belong to the species of the P. auritus group present in the Mediterranean, i.e. P. auritus (Linnaeus, 1758) or P. macrobullaris Kuzjakin, 1965. From the former group, four forms are present in the eastern Mediterranean, viz. P. austriacus (with the easternmost known occurrence in the Balkans), P. kolombatovici (Balkans and southern Anatolia), P. cf. christii Gray, 1838 (southern parts of Jordan and Israel and northern Egypt incl. Sinai;

[^4]

Figs. 33, 34. Bivariate plot of the examined Cypriot and comparative samples of the genus Plecotus Geoffroy, 1818; the polygons denote clusters of the comparative samples as depicted in the legend; L Cyprus $=$ lower or lowland Cyprus, U Cyprus $=$ upper or mountain Cyprus. For the origin of the comparative material see Benda \& Ivanova (2003) and Benda et al. (2004b, 2006). 33 (above) - greatest length of the skull (LCr) against the length of the upper tooth-row $\left(\mathrm{CM}^{3}\right) .34$ (below) - results of the principal component analysis ($\mathrm{PC} 1=51.64 \%$ of variance; $\mathrm{PC} 2=15.15 \%$) of 13 cranial dimensions (see Table 4).

Table 4. Basic biometric data on the examined Cypriot samples of Plecotus kolombatovici Đulić, 1980 and comparative samples of Mediterranean populations of the genus Plecotus Geoffroy, 1818. For abbreviations see p. 75; for the comparative material origin see Benda \& Ivanova (2003) and Benda et al. (2004b, 2006); * - data taken from Benda et al. (2004b), ${ }^{* *}$ - cranial data taken from Benda et al. (2006)

for details on this form see Benda et al. 2006), and P. gaisleri Benda, Kiefer, Hanák et Veith, 2004 (Mediterranean Cyrenaica). However, the skull comparison of the Cypriot samples and the eastern Mediterranean representatives of other Plecotus species (Figs. 33, 34, Table 4) clearly grouped the bats from mountainous and lowland parts of Cyprus with the Balkan and Anatolian samples of P. kolombatovici. This common cluster showed smaller values of skull dimensions than are those of other species and only slightly overlapped with some of their clusters (Fig. 33). Similarly, the results of the principal component analysis (Fig. 34) grouped the Cypriot and other Mediterranean samples of P. kolombatovici in one common cluster out of other compared species. The correct species identification of the Cypriot populations as of P. kolombatovici was

Figs. 35, 36. Portraits of Plecotus kolombatovici Đulić, 1980 from Cyprus (both photos by R. Lučan). 35 (left) - individual from Agırdağ, netted at the entrance of a cleft cave at ca. 560 m a. s. 1.36 (right) - individual from the Troodos Forest, netted at the upper gallery of an abandoned mine 5 km southwest from Kakopetria, at ca. 1665 m a. s. 1. (Fig. 10).
confirmed not only by the morphometric comparison (see also the analysis by Benda et al. 2006) but also by a genetic analysis; the individual collected at Agırdağ in Northern Cyprus (Fig. 35) showed identical haplotype with an individual of P. kolombatovici from southern Anatolia (Ermenek, Karaman; Juste et al. 2004). Since the examined specimens did not show any remarkable differences in morphology and obviously belonged to an only morphotype (see also Figs. 35, 36), we regard the Cypriot samples to represent one species. External and cranial dimensions of the examined Cypriot specimens of P. kolombatovici are shown in Appendix III.

In accordance with these results, we consider P. kolombatovici the only Plecotus species being confirmed to occur in Cyprus. Another species of the genus known from the Levantine part of the Middle East as well as from Crete and the Balkans, P. macrobullaris (see Hanák et al. 2001, Spitzenberger et al. 2006, Benda et al. 2006), which could be expected to occur in Cyprus, remains to be proved.

Miniopterus schreibersii (Kuhl, 1817)

Records. Original data: S outhern C y prus: Kakopetria, Troodos Forest, abandoned mine 4 km to SW [1], lower gallery (Figs. 38, 39), 29 March 2005: obs. a colony of ca. 250 inds., coll. 3 ma (NMP 91266, 91267 [S+A], 91265 [A]), 11 April 2005: obs. a colony of ca. 50 inds., coll. 5 ma (NMP 90404-90406 [S+A], 90402, 90403 [A]); 15 October 2005: obs. colony of ca. 70 inds., exam. 57 inds. ($2 \mathrm{ma}, 4 \mathrm{~ms} / \mathrm{j}, 15 \mathrm{fa}, 36 \mathrm{fs} \mathrm{j}$); - Kalavasos, abandoned mine ca. 3 km to NW

Fig. 37. Records of Miniopterus schreibersii (Kuhl, 1817) in Cyprus.

Fig. 38. Entrance to the lower gallery of an abandoned mine in the Troodos Forest, ca. 4 km southwest of Kakopetria, at ca. 1305 m a. s. 1. This ca. 200 m long gallery is the highest situated site of occurrence of Miniopterus schreibersii in Cyprus; a colony of 50-250 individuals was found there three times in 2005 along with individuals of Myotis blythii and M. nattereri (photo by I. Horáček).

Fig. 39. Cluster of individuals of Miniopterus schreibersii (Kuhl, 1817) found in the lower gallery of an abandoned mine ca. 4 km southwest of Kakopetria (Fig. 38) on 29 March 2005 (photo by I. Horáček).
[2; Fig. 11], 19 April 2005: net. 1 ma (NMP 90434 [S+A]); - Neo Horio, Smigies Trail, ca. 3 km to NW [3], abandoned chromite mine system 'Magnesia Mine', 8 September 2000: obs. a colony of ca. 100 inds. (exam. 3 ma); 27-28 March 2005: net. $3 \mathrm{ma}, 6$ fa (NMP 91254-91260 [S+A], 91253, 91826 [A]); 12 October 2005: obs. 1 ind. in the mine, net. 9 ma, $1 \mathrm{~ms}, 1 \mathrm{fa}, 9 \mathrm{fs} / \mathrm{j}$ (coll. $1 \mathrm{~m}, 2$ f; NMP 91207 [S+A], 91828,91829 [A]). - Published data: Southern Cyprus: Cape Pyla [Akrotira Pyla] [4], small cave in the sea-cliffs, 1 ind. (Bate 1903); - Emba [= Empa] [5] (Paphos), 20 May 1988 [leg. P. Boye] (Kock 1989) = vicinity of Paphos [$=$ Pafos], cave, 20 May 1988: ca. 500 inds. (Boye et al. 1990); March 1989: ca. 30 inds., December 1989: 30-50 inds. (Boye et al. 1990); - Limassol [= Lemesos] [6], a cave to N, March 1988: 10 or more inds. (Boye et al. 1990), 26 March 1989: 6 or more inds. (Boye et al. 1990). - C y prus: Cyprus, 1 m (FMNH 44249) (Lay 1967).

Comments. Although Miniopterus schreibersii was first mentioned from Cyprus already by Bate (1903), only six accurate record sites are available until now (Fig. 37). This number of localities seems to be rather low in comparison with those of the Mediterranean species showing similar habitat preferences (see e.g. Rhinolophus ferrumequinum and/or R. hipposideros).

The Cypriot records of M. schreibersii come from a rather wide altitude range of ca. $50-1305 \mathrm{~m}$ a. s. 1. (mean 330 m), however, most of the findings are of a lowland origin. The only 'mountain exception' comes from a mine above Kakopetria (at 1305 m; Fig. 38) where a colony was repeatedly recorded (in this colony, females were found only in autumn, while only males were recorded in spring; Fig. 39). All records are connected with underground shelters; findings inside
underground roosts are prevailing (12 records versus three nettings at the entrances to underground spaces). Occasional checks of colony roosts showed high flexibility in their use (see also the data by Boye et al. 1990); the numbers of M. schreibersii found per individual checks varied in two orders of magnitude between the visits (see Records) suggesting large scale seasonal exchanges among shelters within the island. External and cranial dimensions of the examined Cypriot specimens of M. schreibersii are shown in Appendix III.

Tadarida teniotis (Rafinesque, 1814)

Records. Original data: S o uthern Cy prus: Apsiou [1], irrigation reservoir, 30 March 2005: det. 1 ind.; - Neo Horio, Petratis gorge ca. 4 km to E [2], 25 March 2005: det. 2 inds.; - Neo Horio, Smigies Trail ca. 3 km to NW [3], at the abandoned chromite mine system 'Magnesia Mine', 12 October 2005: det. \& obs. 1 ind.; - Paramytha [4], small cave above a road (Fig. 40), 31 March 2005: coll. 1 ma in a rocky fissure (NMP 91831 [S+A]), repeatedly det. min. 1 another ind.; - Prodromi, Androlikou gorge ca. 2 km to SW [5], 26 March 2005: det. 1 ind.; - Troodos, Troodos Forest 1.5 km to N [6], at an abandoned chromite mine, 29 March 2005: det. min. 1 ind.; 13 October 2005: obs. \& det. 2-3 inds.; - Troodos, Troodos Forest ca. 3 km to W [7], at the Hadjipavlou mine (Fig. 16), 14 October 2005: det. 1 ind. - Published data: Northern Cyprus: Kyrenia [= Beşparmak] range [8], March 1989: calls of cf. T. teniotis (Boye et al. 1990).

Comments. Boye et al. (1990) discussed possible occurrence of Tadarida teniotis in Cyprus suggested by a call recorded in the Besparmak (= Pentadaktylos) Mts in March 1989. This tentative report was accepted by Kryštufek \& Vohralík (2005: 235) as a valid evidence of Cypriot distribution of this species. However, an undoubted confirmation of its occurrence on the island is reported here, with a male collected in a small cave at Paramytha (Fig. 40), now representing the first (and only) museum specimen of T. teniotis from Cyprus. On the other hand, the presence of this bat in Cyprus was well predictable, considering its relatively common distribution in the southwestern part of Turkey (von Helversen 1989, Benda \& Horáček 1998, Karataş et al. 2006).

Fig. 40. Rocky wall above the road near Paramytha; the small cave in this wall is the only known site of collection of Tadarida teniotis (Rafinesque, 1814) in Cyprus (also the calls of Pipistrellus kuhlii were there recorded) (photo by I. Horáček).

Fig. 41. Records of Tadarida teniotis (Rafinesque, 1814) in Cyprus.

Despite the conspicuous T. teniotis call, easily audible also to the naked ear, this bat has been recorded rather scarcely in Cyprus; only eight records are available, including the rather uncertain indication vy Boye et al. (1990) (Fig. 41). Most of the findings are call records, no netted individuals are available and only one individual was collected in its shelter (see above). However, the records come from all parts and different altitudes of the island ($255-1630 \mathrm{~m}$ a. s. 1., mean 723 m). The surprisingly scarce occurrence of T. teniotis in Cyprus resembles the situation in the Mediterranean part of the Levant (Syria, Lebanon), where records of this bat are rather infrequent despite the abundance of suitable habitats (Benda et al. 2006, our unpubl. data). Cranial dimensions of the Cypriot specimen of T. teniotis are shown in Appendix III.

CONCLUSION

The present review summarises at least 195 records of 22 bat species available from the island of Cyprus (Table 1). In comparison with the most recent list of the Cypriot bat fauna by Kryštufek \& Vohralik (2001, 2005), four species are here reported to occur in Cyprus for the first time: Eptesicus anatolicus, Pipistrellus pipistrellus, Nyctalus leisleri, and N. lasiopterus. Two more species, which had been suggested to inhabit Cyprus, are here confirmed from the island: Plecotus kolombatovici and Tadarida teniotis. The former species was previously mentioned under an incorrect taxonomic name, suggesting presence of more species in the sense of the modern view (Spitzenberger et al. 2006), but only P. kolombatovici was undoubtedly proved to live on the island. On the other hand, the Cypriot occurrence of three bats, Rhinolophus euryale, Myotis capaccinii and Nyctalus noctula, is here considered only tentative and in a need to be further confirmed.

Table 5. List of bat species of the eastern Mediterranean with marked faunal status per individual regions. Legend: SW Turkey = Taurus region according to the regional division of Turkey by Kryštufek \& Vohralík (2001); Levant = here the area composed by Lebanon, Turkish province of Hatay, and the Mediterranean parts of Syria, Israel and West Bank (Benda et al. 2006); S Greece = Peloponnese and surrounding islands (Hanák et al. 2001); + = occurrence confirmed; (+) = occurrence published but doubtful (see the text and the relevant literature); - = occurrence unconfirmed; data concerning the occurrence in Crete are based on those by Hanák et al. (2001) and our unpublished records

	Cyprus	SW Turkey	Levant	Crete	S Greece
Rousettus aegyptiacus	+	+	+	-	-
Rhinolophus ferrumequinum	+	+	+	+	+
Rhinolophus hipposideros	+	+	+	+	+
Rhinolophus euryale	(+)	+	+	-	+
Rhinolophus mehelyi	+	+	+	-	+
Rhinolophus blasii	+	+	+	+	+
Myotis myotis	-	+	+	-	+
Myotis blythii	+	+	+	+	+
Myotis bechsteinii	-	+	-	-	+
Myotis nattereri	+	+	+	-	+
Myotis emarginatus	+	+	+	+	+
Myotis aurascens	-	+	+	+	+
Myotis capaccinii	(+)	+	+	+	+
Eptesicus serotinus	+	+	+	+	+
Eptesicus anatolicus	+	+	+	-	-
Hypsugo savii	+	+	+	+	+
Pipistrellus pipistrellus	+	(+)	+	+	+
Pipistrellus pygmaeus	+	-	-	-	+
Pipistrellus nathusii	-	-	-	-	+
Pipistrellus kuhlii	+	+	+	+	+
Nyctalus noctula	(+)	+	+	-	+
Nyctalus leisleri)	+	-	-	+
Nyctalus lasiopterus	+	+	-	-	-
Plecotus auritus	-	-	-	-	+
Plecotus macrobullaris	-	+	+	+	+
Plecotus austriacus	-	-	-	-	(+)
Plecotus kolombatovici	+	+	+	+	+
Miniopterus schreibersii	+	+	+	+	+
Tadarida teniotis	+	+	+	+	+

The bat fauna of Cyprus covers almost all elements expected for the island. Out of the true Mediterranean fauna of the eastern Mediterranean region (i.e. the area from Greece to Israel), which comprises 29 species, 25 occur in the Asian Mediterranean (the coastal belt from SW Turkey to N Israel). From this number, only Myotis myotis (Borkhausen, 1797), M. bechsteinii (Kuhl, 1817), M. aurascens Kusjakin, 1935, and Plecotus macrobullaris Kuzjakin, 1965 have not been found in Cyprus, while in the Asian Mediterranean, Pipistrellus pygmaeus has not been documented to occur but has been found in Cyprus (Table 5). From the missing faunal elements, particularly M. aurascens and P. macrobullaris could potentially enrich the faunal list of Cyprus. Since P. macrobullaris has been found in Crete (Juste et al. 2004), an island more isolated from the mainland shore, where it lives in sympatry with P. kolombatovici, as well as in the Levant (see Benda et al. 2006), its occurrence in Cyprus is quite likely. Similarly, M. aurascens has been found both in Crete and the Levant (Benda \& Karataş 2005) and its record in Cyprus should thus be expected. In comparison with the situation in Crete, the second largest island in the eastern Mediterranean region, the Cypriot bat fauna conforms better to the fauna of close mainland. In

Crete, only two Pipistrellus species have been found, none of the genus Nyctalus, but two Plecotus species are present while Myotis nattereri is missing (Table 5).

As pointed out above, the Cypriot bat fauna most resembles that of the Mediterranean Levant by its composition, both faunas sharing unique elements of the easternmost Mediterranean, such as Rousettus aegyptiacus, Myotis blythii omari, Eptesicus serotinus shiraziensis or E. anatolicus. On the other hand, the presence of several faunal elements as well as the preliminary genetic comparison in one species clearly showed partial affinity of the Cypriot fauna to European and Cretan faunas. The species Pipistrellus pygmaeus, Nyctalus leisleri and N. lasiopterus have their centre of distribution in Europe, while their Cypriot presence is an isolated stretch of the main range situated westwards. Preliminary results of genetic analyses proved closer relationships of several Cypriot populations of R. ferrumequinum to the populations from Crete and Europe than to populations from the Middle East. These proximities directed to two regions of the eastern Mediterranean clearly suggested at least two colonisation episodes when mainland bats (and possibly not only bats) reached the island. One, most probably older colonisation wave brought contemporary European fauna to Cyprus and another wave came to the island (perhaps later) from Asia Minor, after colonisation of this peninsula. Of course, such colonisation events might have occurred more frequently and even repeatedly in some species, but without any doubts bat colonisation of Cyprus was due to several events or during an extended period.

Acknowledgements

The authors wish to thank to all who helped with the data collecting, namely Paolo Agnelli, Zdeňka Bendová, Daniel Frynta, Jiří Gaisler, Benedetto Lanza, Miloš Macholán, Jeroen Reinhold, and Jan Sklenář. For fruitful discussions we thank Dieter Kock, Friederike Spitzenberger and Vladimír Vohralík. Petr Kůs and Václav Gvoždík are appreciated for providing unpublished data on the phylogeography of Rhinolophus spp. of the eastern Mediterranean. We also thank Josef Bryja and Alena Fornůsková from the Department of Population Biology, Institute of Vertebrate Biology, AS CR for laboratory equipment and help with the genetic identification of the Cypriot specimens of Pipistrellus pygmaeus; the identification was supported by a grant of the Czech Science Foundation (\# 206/06/0954).

The field work, examination of the Cypriot bats as well as the comparative studies were supported by grants by the Czech Science Foundation (\# 206/05/2334), Ministry of Culture of the Czech Republic (\# DE06P04OMG008, MK00002327201) and Ministry of Education of the Czech Republic (\# MSM6007665801).

REFERENCES

Albayrak I. 2003: The bats of the Eastern Black Sea Region of Turkey (Mammalia: Chiroptera). Turkish Journal of Zoology 27: 269-273.
Andersen K. 1905: On some bats of the genus Rhinolophus, with remarks on their mutual affinities, and descriptions of twenty-six new forms. Proceedings of the Zoological Society of London 1905(2): 75-145.
Andersen K. 1906: On some new or little-known bats of the genus Rhinolophus in the collection of the Museo Civico, Genoa. Annali del Museo Civico di Storia Naturalia di Genova, Serie 3 2[1905]: 173-195.
Andersen K. 1907: On the geographical races of the lesser horseshoe bat (Rhinolophus hipposiderus). The Annals and Magazine of Natural History (7)20: 384-389.
Andersen K. 1912: Catalogue of the Chiroptera in the Collection of the British Museum. Second Edition. Volume I: Megachiroptera. London: British Museum (Natural History), ci+854 pp.
Andersen K. 1918: Diagnoses of new bats of the families Rhinolophidae and Megadermatidae. The Annals and Magazine of Natural History (9)2: 374-384.
Aguilar J.-P., Calvet M., Crochet J.-Y., Legendre S., Michaux J. \& Sigé B. 1985: Première occurence d’un megachiroptère ptéropodidé dans le Miocène moyen d'Europe (gisement de Lo Fournas II, Pyrénées-Orientales, France). Palaeovertebrata 16: 173-184.
Ben-Avraham Z., Woodside J., Lodolo E., Gardosh M., Grasso M., Camerlenghi A. \& Vai G. B. 2006: Eastern Mediterranean basin systems. Pp.: 263-276. In: Gee D. G. \& Stephenson R. A. (eds.): European Lithosphere Dynamics. Memoirs 2006. Geological Society, London.
Bate D. M. A. 1903: The Mammals of Cyprus. Proceedings of the Zoological Society of London 1903(2): 341-348.

Batlee I. \& Tous J. 1997: Carob Tree. Ceratonia siliqua L. Promoting the Conservation and Use of Underutilized and Neglected Crops 17. Rome: Institute of Plant Genetics and Crop Plant Research, Gatersleben/International Plant Genetic Resources Institute, 79 pp .
Benda P. \& Horáček I. 1998: Bats (Mammalia: Chiroptera) of the Eastern Mediterranean. Part 1. Review of distribution and taxonomy of bats in Turkey. Acta Societatis Zoologicae Bohemicae 62: 255-313.
Benda P. \& Ivanova T. 2003: Long-eared bats, genus Plecotus (Mammalia: Chiroptera), in Bulgaria: a revision of systematic and distributional status. Časopis Národniho Muzea, Řada Přírodovědná 172: 157-172.
Benda P. \& Karatas A. 2005: On some Mediterranean populations of bats of the Myotis mystacinus morpho-group (Chiroptera: Vespertilionidae). Lynx, Series Nova 36: 9-38.
Benda P., Hulva P., Andreas M. \& Uhrin M. 2003a: Notes on the distribution of Pipistrellus pipistrellus complex in the Eastern Mediterranean: First records of P. pipistrellus for Syria and of P. pygmaeus for Turkey. Vespertilio 7: 87-95.
Benda P., Ivanova T., Horáček I., Hanák V., Červený J., Gaisler J., Gueorguieva A., Petrov B. \& Vohralík V. 2003b: Bats (Mammalia: Chiroptera) of the Eastern Mediterranean. Part 3. Review of bat distribution in Bulgaria. Acta Societatis Zoologicae Bohemicae 67: 245-357.
Benda P., Hulva P. \& GaisLer J. 2004a: Systematic status of African populations of Pipistrellus pipistrellus complex (Chiroptera: Vespertilionidae), with a description of a new species from Cyrenaica, Libya. Acta Chiropterologica 6: 193-217.
Benda P., Kiefer A., Hanák V. \& Veith M. 2004b: Systematic status of African populations of long-eared bats, genus Plecotus (Mammalia: Chiroptera). Folia Zoologica 53 (Monograph 1): 1-47.
Benda P., Andreas M., Kock D., Lučan R. K., Munclinger P., Nová P., Obuch J., Ochman K., Reiter A., Uhrin M. \& Weinfurtová D. 2006: Bats (Mammalia: Chiroptera) of the Eastern Mediterranean. Part 4. Bat fauna of Syria: distribution, systematics, ecology. Acta Societatis Zoologicae Bohemicae 70: 1-329.
Bergmans W. 1994: Taxonomy and biogeography of African fruit bats (Mammalia, Megachiroptera). 4. The genus Rousettus Gray, 1821. Beaufortia 44(4): 79-126.
Bequaert J. C. 1953: Exploration du Parc National Albert. Mission G. F. de Witte (1933-1935). Hippoboscidae and Nycteribiidae. Institut des Parcs Nationaux du Congo Belge, Bruxelles 79(7): 89-94 (non vidi, ex Kock 1974).
Bilgin R., Karatas A., Çoraman E., Pandurski I., Papadatou E. \& Morales J. C. 2006: Molecular taxonomy and phylogeography of Miniopterus schreibersii (Kuhl, 1817) (Chiroptera: Vespertilionidae), in the Eurasian transition. Biological Journal of the Linnean Society 87: 577-582.
Blondel J. \& Aronson J. 1999: Biology and Wildlife of the Mediterranean Region. Oxford: Oxford University Press, 328 pp .
Boekschoten G. J. \& Sondatr P. Y. 1972: On the fossil Mammalia of Cyprus. Proceedings of the Koninklijke Nederlandse Akademie van Wetenschappen, Series B 75: 306-338.
Boye P., Ротt-Dörfer B., Dörfer K. \& Demetropoulos A. 1990: New records of bats (Chiroptera) from Cyprus and notes on their biology. Myotis 28: 93-100.
Bures P., Pavlicek T., Horova L. \& Nevo E. 2004: Microgeographic genome size differentiation of the Carob tree, Ceratonia siliqua, at ‘Evolution Canyon'. Israel Annals of Botany 93: 529-535.
Csorba G., Ujhelyi P. \& Thomas N. 2003: Horseshoe Bats of the World (Chiroptera: Rhinolophidae). Bishop's Castle, UK: Alana Books, xxxii+160 pp.
De Candolle A. 1883: L'origine des plantes cultivées. Paris: Balière.
Dietz C., Schunger I., Keşapli Didrickson Ö., Karataş A. \& Mayer F. 2005: First record of Pipistrellus pygmaeus (Chiroptera: Vespertilionidae) in Anatolia. Zoology in the Middle East 34: 5-10.
DeBlase A. F. 1972: Rhinolophus euryale and R. mehelyi (Chiroptera, Rhinolophidae) in Egypt and Southwest Asia. Israel Journal of Zoology 21: 1-12.
DeBlase A. F. 1980: The bats of Iran: systematics, distribution, ecology. Fieldiana: Zoology, New Series 4: i-xvii+1-424.
Doria G. 1887: I chirotteri trovati finora in Liguria. Annali del Museo Civico di Storia Naturalia di Genova, Serie 2 4[1886]: 385-474.
ĐuLić B. 1980: Morphological characteristics and distribution of Plecotus auritus and Plecotus austriacus in some regions in Yugoslavia. Pp.: 151-161. In: Proceedings of the Fifth International Bat Research Conference. Lubbock: Texas Tech Press, 434 pp.
Ellerman J. R. \& Morrison-Scott T. C. S. 1951: Checklist of Palaearctic and Indian Mammals 1758 to 1946. London: the Trustees of the British Museum, 810 pp .
Günther A. 1879: Notice of a collection of mammals and reptiles from Cyprus. Proceedings of the Zoological Society of London 1879: 741.
Felten H., Spitzenberger F. \& Storch G. 1977: Zur Kleinsäugerfauna West-Anatoliens. Teil IIIa. Senckenbergiana Biologica 58: 1-44.
Festa E. 1894: Viaggo del Dr. E. Festa in Palestina, nel Libano e regioni vicine. Parte narrativa. Bollettino dei Musei di Zoologia ed Anatomia Comparata della R. Università di Torino 172(9): 1-38.

Fitzinger L. J. 1870: Kritische Durchsicht der Ordnung der Flatterthiere oder Handflügler (Chiroptera). Familie der Kammnasen (Rhinolophi). II. Abtheilung. Sitzungsberichte der Kaiserlichen Akademie der Wissenschaften, I. Abtheilung, Mathematische-Naturwissenschaftliche Classe 61(Februar): 1-76.
Hadisterkotis E. 2006: The destruction and conservation of the Egyptian fruit bat Rousettus aegyptiacus in Cyprus: a historic review. European Journal of Wildlife Research 52: 282-287.
Hanák V., Benda P., Ruedi M., Horáček I. \& Sofianidou T. S. 2001: Bats (Mammalia: Chiroptera) of the Eastern Mediterranean. Part 2. New records and review of distribution of bats in Greece. Acta Societatis Zoologicae Bohemicae 65: 279-346.
Harrison D. L. 1961: On Savi's Pipistrelle, (Pipistrellus savii Bonaparte 1837) in the Middle East, and a second record of Nycticeius schlieffeni Peters 1859 from Egypt. Senckenbergiana Biologica 42: 41-44.
Harrison D. L. 1964: The Mammals of Arabia. Volume I. Introduction, Insectivora, Chiroptera, Primates. London: Ernest Benn Limited, 192 pp.
Harrison D. L. \& Makin D. 1988: Significant new records of vespertilionid bats (Chiroptera: Vespertilionidae) from Israel. Mammalia 52: 593-596.
Hasbenli A. 1997: Contributions to bat flies of Turkey (Diptera: Nycteribiidae, Streblidae). Gazi Üniversitesi Fen Bilimleri Enstitüsi Dergisi 10: 533-544.
Häussler U., Nagel A., Braun M. \& Arnold A. 2000: External characters discriminating sibling species of European pipistrelles, Pipistrellus pipistrellus (Schreber, 1774) and P. pygmaeus (Leach, 1825). Myotis 37: 27-40
Heller K.-G., Volleth M. \& Achmann R. 2001: First record of Myotis emarginatus from Cyprus. Myotis 39: 123.
von Helversen O. 1989: New records of bats (Chiroptera) from Turkey. Zoology in the Middle East 3: 5-18.
von Helversen O. 1998: Eptesicus bottae (Mammalia, Chiroptera) auf der Insel Rhodos. Bonner Zoologische Beiträge 48: 113-121.
von Helversen O. \& Holderied M. 2003: Zur Unterscheidung von Zwergfledermaus (Pipistrellus pipistrellus) und Mückenfledermaus (Pipistrellus mediterraneus/pygmaeus) im Feld. Nyctalus (Neue Folge) 8: 420-426.
Hopkins G. H. E. \& Rothschid M. 1956: An Illustrated Catalogue of the Rothschild Collection of Fleas (Siphonaptera) in the British Museum (Natural History). Volume II. Coptopsyllidae, Vermipsyllidae, Stephanocircidae, Ischnopsyllidae, Hypsophthalmidae and Xiphiopsyllidae. London: The Trustees of the British Museum.
Horáciek I., Hanák V. \& Gaisler J. 2000: Bats of the Palearctic region: a taxonomic and biogeographic review. Pp.: 11-157. In: WoŁoszyn B. W. (ed.): Proceedings of the VIIIth European Bat Research Symposium. Vol. I. Approaches to Biogeography and Ecology of Bats. Kraków: Chiropterological Information Center, Institute of Systematics and Evolution of Animals PAS, 280 pp .
Horáček I., Hulva P., Lučan R. K., Havelková S. \& Benda P. 2007a: On flying foxes in the Mediterranean region. P.: 207. In: Espinosa C., Navarro L., Arroyo-Cabrales J., Flores J. J., Galicia C., Medellín R. \& López G. (eds.): XIV International Bat Research Conference. 37th NASBR. Merida, Yuc., Mexico 2007, August 19-23. Program and Abstracts. Bioconciencia, Merida, 264 pp .
Horáček I., Benda P., Hulva P., Lučan R. \& Hanák V. 2007b: Bats of the Eastern Mediterranean: the geographic structure of diversity and its sources. P.: 211. In: Prigioni C. \& Sforzi A. (eds): V European Congress of Mammalogy. Siena, Italy. 21-26 September 2006. Abstracts: Oral \& Poster Presentations. Hystrix - The Italian Journal of Mammalogy (New Series) Suppl. 1-2. Siena: Associazione Teriologica Italiana, 576 pp.
Hulva P., Horáćek I., Strelkov P. P. \& Benda P. 2004: Molecular architecture of Pipistrellus pipistrellus / Pipistrellus pygmaeus complex (Chiroptera: Vespertilionidae): further cryptic species and Mediterranean origin of the divergence. Molecular Phylogenetics and Evolution 32: 1023-1035.
IbáNezz C., Guillén A. \& Bogdanowicz W. 2004: Nyctalus lasiopterus (Schreber, 1780) - Riesenabendsegler. Pp.: 695-716. In: Krapp F. (ed.): Handbuch der Säugetiere Europas. Band 4: Fledertiere. Teil II: Chiroptera II. Vespertilionidae 2, Molossidae, Nycteridae. Wiebelsheim: Aula-Verlag, x+605-1186 pp.
Jordan K. 1942: On four new Palearctic bat-fleas in the British Museum collection. Eos, Revista Española de Entomología 18: 243-250.
Juste J., Ibáñez C., Muñoz J., Trujillo D., Benda P., Karataş A. \& Ruedi M. 2004: Mitochondrial phylogeography of the long-eared bats (Plecotus) in the Mediterranean Palaearctic and Atlantic Islands. Molecular Phylogenetics and Evolution 31: 1114-1126.
Kahmann H. 1958: Die Alpenfledermaus Pipistrellus savii Bonaparte 1837 in den Bayerische Alpen, und biometrische Mitteilungen über die Art. Zoologischer Anzeiger 160: 87-94.
Kahmann H. 1961: Beitraege zur Saeugetierkunde der Türkei. 2 - Die Brandmaus (Apodemus agrarius Pallas, 1774) in Tharkien und die südeuropaeische Verbreitung der Art. Istanbul Üniversitesi Fen Fakültesi Mecmuasi, Seri B [Revue de la Faculte des Sciences de l'Universite d'Istanbul, Serie B] 26: 87-106.
Kahmann H. 1962: Neue Ergebnisse in der Säugetierforschung in der Türkei. Säugetierkundliche Mitteilungen 10: 112-116.

Kahmann H. 1981: Zur Naturgeschite des Löffelbilches, Eliomys melanurus Wagner, 1840 (Mammalia: Rodentia, Gliridae) (Eine vorläufige Untersuchung). Spixiana 4(1): 1-37.
Kahmann H. \& Çağlar M. 1959: Türkiyede memeli hayvanlar araştırmı sahasında yeni buluşlar [New data on Turkish mammalian fauna brought by a recent research]. Türk Bioloji Dergisi 10(3): 119-126 (in Turkish).
Kahmann H. \& Çağlar M. 1960: Beitraege zur Saeugetierkunde der Türkei. 1 - Fledermaeuse aus der Landschaft Hatay (Eine vorlaeufige Mitteilung). Istanbul Üniversitesi Fen Fakültesi Mecmuasi, Seri B [Revue de la Faculte des Sciences de l'Universite d'Istanbul, Serie B] 25(1-2): 1-21.
Kañuch P., НА́лкоvÁ P., Ћ̌енÁ́ Z. \& Bryja J. 2007: A rapid PCR-based test for species identification of two cryptic bats Pipistrellus pipistrellus and P. pygmaeus and its application on museum and dropping samples. Acta Chiropterologica 9: 277-282.
Karataş A., Benda P., Toprak F. \& Karakaya H. 2003a: New and significant records of Myotis capaccinii (Chiroptera: Vespertilionidae) from Turkey, with some data on its biology. Lynx, Series Nova 34: 39-46.
Karataş A., Yığıt N., Çolak E. \& Kankiliç T. 2003b: Contribution to Rousettus aegyptiacus (Mammalia: Chiroptera) from Turkey. Folia Zoologica 52: 137-142.
Karataş A., Yığıt N., Kankiliç T. \& Çolak E. 2004: Contribution to the distribution and karyology of some vespertilionid bats (Mammalia: Chiroptera) from Turkey. Zoology in the Middle East 31: 5-12.
Karataş A., Sözen M. \& Matur F. 2006: Karyology of some bat species (Chiroptera: Rhinolophidae, Molossidae) from Turkey. Mammalian Biology 71: 159-163.
Karataş A., Özkurt Ş. \& Kock D. 2007: The recovery of Nyctalus lasiopterus (Schreber, 1780) (Chiroptera: Vespertilionidae) in Turkey. Acta Zoologica Cracoviensia 50A: 53-56.
Kiefer A. \& von Helversen O. 2004: Plecotus kolombatovici (Đulić, 1980) - Balkanlangohr. Pp.: 1059-1066. In: Krapp F. (ed.): Handbuch der Säugetiere Europas. Band 4: Fledertiere. Teil II: Chiroptera II. Vespertilionidae 2, Molossidae, Nycteridae. Wiebelsheim: Aula-Verlag, x+605-1186 pp.
Kоск D. 1974: Pupipare Dipteren von Säugetieren des nordöstlichen Mittelmeerraumes (Ins.: Diptera). Senckenbergiana Biologica 55: 87-104.
Kоск D. 1978: A new fruit bat of the genus Rousettus Gray 1821, from the Comoro Islands, Western Indian Ocean (Mammalia: Chiroptera). Pp.: 205-216. In: Olembo R. J., Castelino J. B. \& Mutere F. A. (eds.): Proceedings of the Fourth International Bat Research Conference. Nairobi: Kenya National Academy for Advacement of Arts and Sciences.
Kоск D. 1989: Fledermaus-Fliegen aus der E-Mediterraneis (Diptera: Nycteribiidae). Entomologischer Zeitschrift 99(5): 56-58.
Korine C., Ido I. \& Zeev A. 1999: Is the Egyptian fruit-bat Rousettus aegyptiacus a pest in Israel? An analysis of the bat's diet and implications for its conservation. Biological Conservation 88: 301-306.
Kowalski K. \& Rzebik-Kowalska B. 1991: Mammals of Algeria. Kraków: Zakład Narodowy im. Ossolińskich - Wydawnictwo, 370 pp.

Kryštufek B. \& Vohralí V. 2001: Mammals of Turkey and Cyprus. Introduction, Checklist, Insectivora. Knjižnica Annales Majora. Koper: Zgodovinsko društvo za južno Primorsko, 140 pp .
Kryštufek B. \& Vohralí V. 2005: Mammals of Turkey and Cyprus. Rodentia I: Sciuridae, Dipodidae, Gliridae, Arvicolinae. Knjižnica Annales Majora. Koper: Univerza na Primorskem \& Zgodovinsko društvo za južno Primorsko, 292 pp.
Kumerloeve H. 1975a: Die Säugetiere (Mammalia) der Türkei. Veröffentlichungen der Zoologischen Staatssammlung München 18: 69-158.
Kumerloeve H. 1975b: Die Säugetiere (Mammalia) Syriens und des Libanon. Veröffentlichungen der Zoologischen Staatssammlung München 18: 159-225.
Lanza B. 1959: III. Chiroptera Blumenbach, 1774. Pp.: 187-432. In: Toschi A. \& Lanza B. (eds.): Fauna d'Italia. Mammalia. Generalità - Insectivora - Chiroptera. Bologna: Calderini, 488 pp.
Lay D. M. 1967: A study of the mammals of Iran. Resulting from the Street Expedition of 1962-63. Fieldiana: Zoology 54: 1-282.
Lewis R. E. \& Harrison D. L. 1962: Notes on bats from the Republic of Lebanon. Proceedings of the Zoological Society of London 138: 473-486.
Matschie P. 1899: Die Fledermäuse des Berliner Museums für Naturkunde. 1. Lieferung. Die Megachiroptera des Berliner Museums für Naturkunde. Berlin: Georg Reimer, viii+102 pp.
Mayer F. \& von Helversen O. 2001: Sympatric distribution of two cryptic bat species across Europe. Biological Journal of the Linnean Society 74: 365-374.
Mayer F., Dietz C. \& Kiefer A. 2007: Molecular species identification boosts bat diversity. Frontiers in Zoology 4: 4.
Mendelssohn H. \& Yom-Tov Y. 1999: Fauna Palaestina. Mammalia of Israel. Jerusalem: The Israel Academy of Sciences and Humanities, $439 \mathrm{pp}+\mathrm{xxxv} \mathrm{pl}$.
Nader I. A., Kock D. \& Al-Khalili A. K. 1983: Eliomys melanurus (Wagner 1839) and Praomys fumatus (Peters 1878) from the Kingdom of Saudi Arabia (Mammalia: Rodentia). Senckenbergiana Biologica 63: 313-324.
Opstaele P. 1990: Waarneming van species vliegende hond op Cyprus (Bellapais). Nieuwsbrief Vleermuiswerkgroep Nederland 5: 15-17.

Osborn D. J. 1963: New distributional records of bats from Turkey. Mammalia 27: 210-217.
Peus F. 1976: Flöhe aus Anatolien und anderen Ländern des nahen Ostens. Abhandlungen Zoologischen-Botanischen Gesellschaft in Wien 20: 1-108.
Rasmussen P. C. \& Prŷs-Jones R. P. 2003: History vs. mystery: the reliability of museum specimen data. Bulletin of the British Ornithologists' Club 123A 66-94.
Reinhold J. 1987: Zoogdierbelevenissen op Cyprus. Mammalaar 1987(3): 4-13.
Ruedi M., Benda P., Berthier P. \& Scaravelli D. 2004: A molecular appraisal of the Myotis myotis - blythii - punicus species complex: the good, the bad and the ugly! Bat Research News 45: 147.
Sanborn C. C. \& Hoogstraal H. 1953: Some mammals of Yemen and their ectoparasites. Fieldiana: Zoology 34: 229-252.
Schmidt W. 1960: Zur Struktur und Tektonik des Insel Cyprus. Geologische Rundschau 50: 375-395.
Shehab A., Karataş A., Amr Z., Mamkhair I. \& Sözen M. 2007: The distribution of bats (Mammalia: Chiroptera) in Syria. Vertebrate Zoology 57: 103-132.
Simmons A. H. 2001: The first humans and last pygmy hippopotami of Cyprus. Pp.: 1-18. In: Swiny S. (ed.): The Earliest Prehistory of Cyprus. From Colonization to Exploitation. Boston, MA: American Schools of Oriental Research, 171 pp.
Simmons N. B. 2005: Order Chiroptera. Pp.: 312-529. In: Wilson D. E. \& Reeder D. M. (eds.): Mammal Species of the World. A Taxonomic and Geographic Reference. Third Edition. Volume 1. Baltimore: The John Hopkins University Press, xxxviii+743 pp.
Spitzenberger F. 1979: Die Säugetierfauna Zyperns. Teil II: Chiroptera, Lagomorpha, Carnivora und Artiodactyla. Annalen des Naturhistorischen Museums in Wien 82: 439-465.
Spitzenberger F. 1994: The genus Eptesicus (Mammalia, Chiroptera) in Southern Anatolia. Folia Zoologica 43: 437-454.
Spitzenberger F. 1996: Distribution and subspecific variation of Myotis blythi and Myotis myotis in Turkey (Mamm., Vespertilionidae). Annalen des Naturhistorischen Museums in Wien 98 B Suppl.: 9-23.
Spitzenberger F. 1997: Erstnachweis der Brandmaus (Apodemus agrarius) für Osterreich. Mammalia austriaca 22. Zeitschrift für Säugetierkunde 62: 250-252.
Spitzenberger F., Piálek J. \& Haring E. 2001: Systematics of the genus Plecotus (Mammalia, Vespertilionidae) in Austria based on morphometric and molecular investigations. Folia Zoologica 50: 161-172.
Spitzenberger F., Strelkov P. P., Winkler H. \& Haring E. 2006: A preliminary revision of the genus Plecotus (Chiroptera, Vespertilionidae) based on genetic and morphological results. Zoologica Scripta 35: 187-230.
Stadelmann B., Herrera L. G., Arroyo-Cabrales J., Flores-Martínez J. J., May B. P. \& Ruedi M. 2004: Molecular systematics of the fishing bat Myotis (Pizonyx) vivesi. Journal of Mammalogy 85: 133-139.
Strelkov P. P. 1972: Ostrouhie nočnicy; rasprostranenie, geografičeskaja izmenčivost', otličija ot bol'ših nočnic [Myotis blythi (Tomes, 1857): distribution, geographical variability and differences from Myotis myotis (Borkhausen, 1797)]. Acta Theriologica 17: 355-380 (in Russian, with an abstract in English).
Swiny S. (ed.) 2001: The Earliest Prehistory of Cyprus. From Colonization to Exploitation. Boston, MA: American Schools of Oriental Research, 171 pp .
Swofford D. L. 2001: PAUP* 4.0b10. Sunderland: Smithsonian Institutions.
Theodor O. 1954: 66a. Nycteribiidae. Pp.: 1-44. In: Lindner E. (ed.): Die Fliegen der palearktischen Region. Lieferung 174. Stuttgart: E. Schweitzerbart'sche Verlagsbuchhandlung (Erwin Nägele).

Theodor O. 1956: On the genus Tripselia and the group of Basilia bathybothyra (Nycteribiidae, Diptera). Parasitology 46: 353-394.
Theodor O. 1967: An Illustrated Catalogue of the Rothschild Collection of Nycteribiidae (Diptera) in the British Museum (Natural History). Publication 655. London: Trustees of British Musem (Natural History), 506 pp.
Theodor O. \& Moscona A. 1954: On bat parasites of Palestine. I. Nycteribiidae, Streblidae, Hemiptera, Siphonaptera. Parasitology 44: 157-245.
Tонме́ G. \& Tонме́ H. 1985: Les mammifères sauvages du Liban. Publications de l'Université Libanaise, Section des Sciences Naturelles 16. Beyrouth: Université Libanaise, 190 pp.
Tristram H. B. 1884: The Survey of Western Palestine. The Fauna and Flora of Palestine. London: The Committee of the Palestine Exploration Fund, xxii +455 pp .
Unger F. \& Kotschy T. 1865: Die Insel Cypern ihrer physischen und organischen Natur nach mit Rücksicht auf ihre frühere Geschichte. Wien: Braumüller, 598 pp.
Yiğit N., Bulut Ş., Karataș A., Çam P., Saygili F. \& Çolak E. in press: Contribution to distribution, morphological peculiarities and karyology of the Greater noctule Nyctalus lasiopterus (Chiroptera: Vespertilionidae) in Southwestern Turkey. Turkish Journal of Zoology.
Zohary M. 1973: Geobotanical Foundations of the Middle East. Vol. 1. Stuttgart and Amsterdam: Gustav Fischer Verlag, Swets \& Zeitlinger, 340 pp .

APPENDIX I

Gazetteer

Only the originally recorded sites are mentioned. The coordinates and altitudes were measured by the GPS in the field; those taken from a map are in brackets.

Afendrika (= Panagia Afentrika [$\Pi \alpha v \alpha \gamma ı \alpha$ A $\varphi \varepsilon v \tau \rho \iota \kappa \alpha]$), ruins, İskele Dist., $35^{\circ} 39^{\prime} \mathrm{N}, 34^{\circ} 26^{\prime} \mathrm{E}$, ca. $25 \mathrm{~m} \mathrm{a}. \mathrm{s}. \mathrm{l.;} \mathrm{-} \mathrm{Agia}$
 Girne Dist. [$35^{\circ} 19^{\prime} \mathrm{N}, 33^{\circ} 23^{\prime} \mathrm{E}$, ca. 70 m a. s. 1.]; - Agios Nikolaos [Aүıo̧ Nıкoд $\alpha o \mathrm{c}$], Diarizos river ca. 3 km to N, Kelefou (Tzelefou) bridge, Pafos Dist., $34^{\circ} 53^{\prime} \mathrm{N}, 32^{\circ} 45^{\prime} \mathrm{E}$, ca. 425 m a. s. 1.; - Agırdağ (= Agirda [A $\left.\rho \iota \delta \alpha\right]$), cleft cave, Girne Dist., $35^{\circ} 18^{\prime} \mathrm{N}, 33^{\circ} 15^{\prime} \mathrm{E}$, ca. 560 m a. s. l.; - Apliç (=Apliki [A $\left.\pi \lambda_{\mathrm{l}} \mathrm{k} \mathrm{l}\right]$), inflow of the Setrahos river into a dam ca. 4 km to S, Lefkosia Dist., $35^{\circ} 04^{\prime} \mathrm{N}, 32^{\circ} 50^{\prime} \mathrm{E}$, ca. 280 m a. s. $1 . ;$ - Apsiou [A $\psi 100$], irrigation reservoir, Lemesos Dist., $34^{\circ} 48^{\prime} \mathrm{N}, 33^{\circ} 01^{\prime} \mathrm{E}$, ca. $445 \mathrm{~m} \mathrm{a}. \mathrm{s}. \mathrm{1.;} \mathrm{-} \mathrm{Ayios} \mathrm{Philion} \mathrm{(=} \mathrm{Agios} \mathrm{Filon} \mathrm{[A} \mathrm{\gamma ı} \mathrm{\varsigma} \Phi_{1} \lambda_{0}$ v]), ruins, İskele Dist., $35^{\circ} 38^{\prime} \mathrm{N}, 34^{\circ} 22^{\prime} \mathrm{E}$, ca. 30 m a. s. l.; - Beylerbeyi, Bellapais Abbey ruins, Girne Dist., $35^{\circ} 18^{\prime} \mathrm{N}, 33^{\circ} 21^{\prime} \mathrm{E}$, ca. 140 m a. s. 1.; - Çınarlı (= Platani [ח $\Pi \alpha \tau \alpha v ı])$, Inçirli cave ca. 4 km to SE, Gazimağusa Dist., $35^{\circ} 19^{\prime} \mathrm{N}, 33^{\circ} 46^{\prime} \mathrm{E}$, ca. 240 m a. s. 1.; - Gazimağusa (=Ammohostos [A $\mu \mu o ́ \chi \omega \sigma \tau \circ \varsigma]$), citadel \& old town, Gazimağusa Dist., $35^{\circ} 08^{\prime} \mathrm{N}, 33^{\circ} 57^{\prime} \mathrm{E}$, ca. 15 m a. s. 1.; - Kakopetria [K $\kappa \kappa о \pi \varepsilon \tau \rho ı \alpha$], Troodos Forest, mine 5 km to SW (upper gallery), Lefkosia Dist., $34^{\circ} 57^{\prime} \mathrm{N}$, $32^{\circ} 52^{\prime}$ E, ca. 1665 m a. s. 1.; - Kakopetria [K $\left.\alpha \kappa о \pi \varepsilon \tau \rho 1 \alpha\right]$, Troodos Forest, mine 4.5 km to SW (middle gallery), Lefkosia Dist., $34^{\circ} 58^{\prime} \mathrm{N}, 32^{\circ} 52^{\prime}$ E, ca. 1450 m a. s. 1.; - Kakopetria [K $\alpha \kappa о \pi \varepsilon \tau \rho ı \alpha$], Troodos Forest, mine 4 km to SW (lower gallery), Lefkosia Dist., $34^{\circ} 58^{\prime} \mathrm{N}, 32^{\circ} 52^{\prime} \mathrm{E}$, ca. 1305 m a. s. l.; - Kalavasos [K $\left.\alpha \lambda \alpha \beta \alpha \sigma o \varsigma\right]$, mine ca. 3 km to NW, Larnaka Dist., $34^{\circ} 48^{\prime} \mathrm{N}, 33^{\circ} 16^{\prime} \mathrm{E}$, ca. 130 m a. s. 1.; - Kalavasos [K $\alpha \lambda \alpha \beta \alpha \sigma$ ç], Vasilikos river, Larnaka Dist., $34^{\circ} 46^{\prime} \mathrm{N}$,
 a. s. 1.]; - Kantara (= Kantara [K $\alpha v \tau \alpha \rho \alpha]$), Kantara castle ruins 3 km to NE, İskele Dist., $35^{\circ} 24^{\prime} \mathrm{N}, 33^{\circ} 55^{\prime} \mathrm{E}$, ca. 625 m a. s. 1.; - Kynousa [Kıvovód, pine forest 1 km to E, Pafos Dist. [$35^{\prime} 02^{\prime} \mathrm{N}, 32^{\circ} 32^{\prime} \mathrm{E}$, ca. 400 m a. s. 1.]; - Lefkoşa (= Lefkosia [$\Lambda \varepsilon v \kappa \omega \sigma t \alpha]$), northeastern margin of the town, Lefkoşa Dist. [ca. $35^{\circ} 13^{\prime} \mathrm{N}, 33^{\circ} 20^{\prime} \mathrm{E}$, ca. 150 m a. s. 1.]; - Lemesos $[\Lambda \varepsilon \mu \varepsilon \sigma o \varsigma]$, touristic resort ca. 4 km to E, Lemesos Dist., $34^{\circ} 43^{\prime} 33^{\circ} 07^{\prime} \mathrm{E}$, ca. 15 m a. s. l.; - Neo Horio [Nعo X $\omega \rho \iota \circ$], Loutra tis Afroditis [$\Lambda о \gamma \tau \rho \alpha \tau \eta \varsigma$ A $\rho \rho о \delta ı \tau \varsigma$] ('Baths of Aphrodite') ca. 4 km to NNW, Akamas Peninsula, Pafos Dist., $35^{\circ} 03^{\prime} \mathrm{N}, 32^{\circ} 21^{\prime}$ E, ca. 50 m a. s. l.; - Neo Horio [Neo X $\omega \rho$ ıo], Petratis Gorge ca. 4 km to E, Pafos Dist., $35^{\circ} 00^{\prime} \mathrm{N}, 32^{\circ} 22^{\prime} \mathrm{E}$, ca. 205 m a. s. $1 . ;$ - Neo Horio [Neo X $\omega \rho$ ıo], Smigies Trail ca. 3 km to NW, abandoned chromite mine system 'Magnesia Mine', Akamas Peninsula, Pafos Dist., $35^{\circ} 03$ ' N, $32^{\circ} 20^{\prime}$ E, ca. $305 \mathrm{~m} \mathrm{a}. \mathrm{s}. \mathrm{l.;} \mathrm{-} \mathrm{Pano} \mathrm{Lefkara}$ $[\Pi \alpha \nu \omega \Lambda \varepsilon v \kappa \alpha \rho \alpha]$, road bridge ca. 3 km to NW, below the Lefkara Dam, Larnaka Dist., $34^{\circ} 54^{\prime} \mathrm{N}, 33^{\circ} 18^{\prime} \mathrm{E}$, ca. 255 m a. s. 1.; - Paramali $\left[\Pi \alpha \rho \alpha \mu \alpha \lambda_{1}\right]$, disused stream ford 2 km to SW, Lemesos Dist. (Akrotiri Sovereign Base Area), $34^{\circ} 41^{\prime} \mathrm{N}$, $32^{\circ} 50^{\prime} \mathrm{E}$, ca. 30 m a. s. $1 . ;$ - Paramytha $[\Pi \alpha \rho \alpha \mu 1 \theta \alpha]$, small cave, Lemesos Dist., $34^{\circ} 47^{\prime} \mathrm{N}, 32^{\circ} 59^{\prime} \mathrm{E}$, ca. 420 m a. s. 1. ; - Perivolia [Пєрı β о 1α], Larnaka Dist., $34^{\prime} 49^{\prime} \mathrm{N}, 33^{\circ} 35^{\prime} \mathrm{E}$, ca. 18 m a. s. 1.; - Prodromi [Про $\rho \rho \mu \mathrm{l}$], Androlikou gorge ca. 2 km to SW, Akamas Peninsula, Pafos Dist., $35^{\circ} 00^{\prime} \mathrm{N}, 32^{\circ} 23^{\prime} \mathrm{E}$, ca. $255 \mathrm{~m} \mathrm{a}. \mathrm{s}. \mathrm{1.;} \mathrm{-} \mathrm{Protaras} \mathrm{[П} \mathrm{\rho о} \mathrm{\tau} \mathrm{\alpha} \mathrm{\rho} \mathrm{\alpha} \mathrm{\varsigma]}$, cave, Ammohostos Dist., $35^{\circ} 01^{\prime} \mathrm{N}, 34^{\circ} 03^{\prime} \mathrm{E}$, ca. 35 m a. s. 1.; - Sourp Magar Ermeni Manastiri (=Armenomonastiro [A $\rho \mu \varepsilon v o \mu о v \alpha \sigma \tau \eta \rho o$]), monastery ruins, Girne Dist. [$35^{\circ} 17^{\prime} \mathrm{N}, 33^{\circ} 31^{\prime} \mathrm{E}$, ca. 500 m a. s. 1.]; - St. Hilarion Castle (=Agios Illarion [A $\boldsymbol{\imath}_{\iota} \varsigma \mathrm{I} \lambda \lambda \alpha \rho ı \omega v$]), cave below the castle, Girne Dist., $35^{\circ} 19^{\prime} \mathrm{N}, 33^{\circ} 17^{\prime} \mathrm{E}$, ca. 690 m a. s. 1.; - Steni [$\Sigma \tau \varepsilon v \eta$], small cave 1.5 km to E , Pafos Dist., $35^{\circ} 00^{\prime} \mathrm{N}, 32^{\circ} 29^{\prime} \mathrm{E}$, ca. 120 m a s. 1.; - Trikomo [T $\rho \kappa \kappa о \mu o$, İskele], İskele Dist., $35^{\circ} 17^{\prime} \mathrm{N}, 33^{\circ} 53^{\prime} \mathrm{E}$, ca. $26 \mathrm{~m} \mathrm{a}. \mathrm{s}. \mathrm{1.;} \mathrm{-} \mathrm{Troodos} \mathrm{[T} \mathrm{\rho óo} \mathrm{\delta oç]} ,\mathrm{Kryos} \mathrm{River} \mathrm{ca}$.2 km to SW, upper end of the Kalidonia Trail, Lemesos Dist., $34^{\circ} 55^{\prime}$ N, $32^{\circ} 52^{\prime}$ E, ca. $1595 \mathrm{~m} \mathrm{a}. \mathrm{s}. \mathrm{l.;} \mathrm{-} \mathrm{Troodos} \mathrm{[Tpoo} \mathrm{\delta oc]} ,\mathrm{Troodos} \mathrm{Forest}$, 3 km to W, Lemesos Dist., $34^{\circ} 56^{\prime} \mathrm{N}, 32^{\circ} 53^{\prime} \mathrm{E}$, ca. $1630 \mathrm{~m} \mathrm{a} . \mathrm{s} .1 . ;$ - Troodos [Tpoo o с], Troodos Forest, mine 1.5 km to N, Lemesos Dist., $34^{\circ} 57^{\prime} \mathrm{N}, 32^{\circ} 53^{\prime} \mathrm{E}$, ca. $1505 \mathrm{~m} \mathrm{a}. \mathrm{s}. \mathrm{1.;} \mathrm{-} \mathrm{Troodos} \mathrm{[T} \mathrm{\rho óo} \mathrm{\delta oc} \mathrm{]} ,\mathrm{Troodos} \mathrm{Forest}$,small pools 3 km to NNW, Lefkosia Dist., $34^{\circ} 57^{\prime} \mathrm{N}, 32^{\circ} 52^{\prime} \mathrm{E}$, ca. 1770 m a. s. 1.; - Vretsia [Bp $\varepsilon \tau \sigma 1 \alpha$], Xeros river ca. 2 km to E, 500 m to S of the Roudias bridge, Pafos Dist., $34^{\circ} 53^{\prime} \mathrm{N}, 32^{\circ} 41^{\prime} \mathrm{E}$, ca. 325 m a. s. 1.; - Yedikonuk (= Eptakómi [Eлtaко $\mu \mathrm{l}$]), sea shore cave ca. 2 km to N , Mehmetçik Dist., $35^{\circ} 28^{\prime} \mathrm{N}, 34^{\circ} 02^{\prime} \mathrm{E}$, ca. 80 m a . s. 1 .

GenBank Accessite Numbers of the examined Cypriot bat specimens

species	Accession No.	voucher	site
Rousettus aegyptiacus	EU086526	biopsy	Akamas, Androlikou gorge
Myotis nattereri	EU086527	NMP 91251	Akamas, Smigies Trail
Pipistrellus pipistrellus	EU084891	MHNG 1807.089	Troodos, Kryos river
Pipistrellus pygmaeus	AJ504442	MHNG 1807.090	Troodos, Kryos river
Pipistrellus pygmaeus	EU084883	NMP 90413	Troodos, Kryos river
Plecotus kolombatovici	EU086528	NMP 91268	Agırdağ

APPENDIX III

 Biometric data on the bats from CyprusBasic external and cranial measurements of the examined bat specimens collected in Cyprus (pp. 126-130). For collection acronyms and measurement abbreviations see p. 71. Arranged in alphabetical and numerical orders, according to collection acronyms and numbers.

coll. No.	site	sex	age	G	LC	LCd	LAt	LA	LCr	LCb/c	LaZ	LaI	LaN	ANc		$M^{3} \mathrm{M}^{3}$	CM^{3}	LMd	ACo	CM_{3}
Rousettus aegyptiacus																				
NMP 90399	Akamas	-	a	-	-	-	-	-	45.19	43.57	28.74	7.62	17.93	13.11	-	-	16.87	35.19	16.34	18.48
NMP 90435	Akamas	m		158.0	155	17	96.3	21.2	44.48	42.52	27.44	8.07	17.19	17.95	9.33	13.29	17.44	34.32	15.38	18.57
NMP 91274	Akamas	m	s	-	135	17	90.0	22.5	42.18	40.93	24.67	7.97	16.81	11.81	8.83	12.61	16.23	32.77	13.92	17.81
Rhinolophus ferrumequinum																				
NMP 90425	Çınarlı	m	a	13.3	69	35	54.6	25.8	24.19	20.83	12.18	2.37	9.18	6.90	6.87	8.47	8.84	16.02	4.08	9.52
NMP 90432	Kalavasos	f	a	19.9	70	41	57.9	25.8	23.90	20.77	12.46	2.54	9.53	7.07	6.77	8.61	8.89	15.75	4.12	9.52
NMP 91204	Akamas	f	a	-	68	33	57.5	21.8	-	-	-	-	-	-	-	-	-	-	-	
NMP 91205	Akamas	f	a	23.0	70	39	58.0	23.0	24.52	21.12	12.45	2.37	9.53	7.13	6.63	8.66	8.54	15.94	4.14	8.92
NMP 91206	Akamas	f	a	22.5	67		55.0	21.5	23.58	20.60	12.12	2.34	9.44	7.52	7.08	8.59	8.64	15.78	4.14	9.33
NMP 91225	Troodos Forest	m	a	16.3	70	33	56.0	22.5	24.65	21.07	12.53	2.43	9.73	7.12	6.76	8.57	8.97	16.48	4.17	9.76
NMP 91234	Çınarlı	m	a	14.3	60	38	57.7	24.0	24.10	20.92	12.28	2.52	9.56	7.27	6.96	9.02	9.09	15.91	4.05	9.78
NMP 91235	Afendrika	m	a	17.5	64	38	55.5	23.0	-	21.00	12.35	2.08	9.31	7.26	6.92	8.69	8.83	16.08	4.28	9.58
NMP 91248	Akamas	f	s	16.0	63	38	55.5	24.7	-	-	-	-	-	-	-	-	-	-	-	-
NMP 91249	Akamas	m	a	15.0	60	36	54.7	22.2	24.23	20.97	12.71	2.21	9.59	7.38	6.86	8.93	8.98	16.37	3.98	9.63
NMP 91250	Akamas	f	a	16.5	60	38	54.5	23.0	23.76	20.46	12.31	2.68	9.62	7.34	6.66	8.61	8.59	15.76	3.76	9.32

 が

 Rhinolophus hipposideros Rhinolophus hipposideros
NMP 90424 Cinarlı $\begin{array}{ll}\text { NMP } 90424 & \text { Çınarlı } \\ \text { NMP } 90923 & \text { Troodos Forest }\end{array}$ NMP 90924 Troodos Forest 4
0
0
0
0
0
0
\vdots
n
2
2
2
2
2
 NMP 90927 Troodos Forest NMP 90928 Troodos Forest NMP 91229 Troodos Forest NMP 91247 Akamas NMP 91261 Troodos Forest NMP 91262 Troodos Forest NMP 91263 Troodos Forest NMP 91269 Çınarlı

 Akamas Akamas Akamas Akamas 7sorot sopoorl Çınarlı N
N
N
N N
 n
2
2
2
2
2
 $0 \varepsilon 8 \mathrm{I} 6 \mathrm{dWN}$

coll. No.	site	sex	age	G	LC	LCd	LAt	LA	LTr	LCr	LCb/c	LaZ	LaI	LaN	ANc		$M^{3} M^{3}$	CM^{3}	LMd	ACo	CM_{3}
Rhinolophus blasii																					
NMP 90433	Kalavasos	m	a	7.9	59	26	46.1	20.2	-	19.22	16.47	9.14	2.47	8.34	5.92	4.49	6.47	6.61	11.57	2.48	6.88
NMP 90929	Troodos Forest	f	a	9.3	55	26	47.1	21.3	-	19.58	16.57	9.23	2.23	8.37	6.31	4.38	6.34	6.57	11.69	2.66	6.69
NMP 90930	Troodos Forest	f	s/a	9.6	56	32	46.4	21.0	-	19.50	16.63	9.21	2.19	8.33	6.18	4.33	6.41	6.63	11.86	2.78	6.83
Myotis blythii																					
NMP 90426	Çınarlı	m	a	-	72	65	56.1	26.9	10.5	22.17	21.28	14.61	4.92	9.62	7.68	5.82	9.07	9.37	16.92	5.56	9.97
NMP 91230	Troodos Forest	m	s	24.0	73	61	59.0	24.5	11.0	22.39	21.17	14.25	5.16	9.71	7.83	5.92	9.18	9.21	16.92	5.66	9.92
Myotis nattereri																					
NMP 90418	Apliç	f	a	7.0	47	48	37.6	18.8	10.2	15.63	14.57	10.04	3.67	7.91	5.79	4.06	6.44	6.02	11.14	3.35	6.41
NMP 90427	Çınarlı	f	a	6.6	48	51	40.5	19.1	10.5	-	-	-	-	-	-			-			
NMP 90428	Çınarlı	f	a	9.7	50	51	42.4	19.5	11.2	-	-	-	-	-	-	-	-	-		-	
NMP 90429	Çınarlı	f	a	9.9	46	53	42.9	19.6	11.0	16.60	15.28	10.02	3.51	7.98	5.66	3.89	6.39	6.28	11.82	3.54	6.61
NMP 90430	Çınarlı	f	a	6.3	42	50	41.3	19.4	10.0	15.92	14.97	9.87	3.63	7.67	5.58	4.12	6.43	6.34	11.52	3.47	6.72
NMP 91208	Troodos Forest	m	S	6.0	46	47	41.0	18.3	11.3	16.20	14.88	9.98	3.84	7.82	5.67	4.09	6.24	6.28	11.44	3.39	6.67
NMP 91211	Troodos Forest	f	S	7.5	50	49	42.5	17.0	10.5	-	-	-	-	-	-			-		-	
NMP 91212	Troodos Forest	f	S		49	49	40.7	18.5	11.0	-	-	-	-	-	-	-	-	-	-	-	-
NMP 91213	Troodos Forest	m	S	6.5	46	48	40.5	17.5	11.7	16.52	15.39	10.31	3.69	7.96	5.86	3.97	6.42	6.31	11.76	3.41	6.68
NMP 91214	Troodos Forest	m	S	6.3	50	46	40.5	-	11.5	15.92	15.02	9.86	3.61	7.58	5.58	4.07	6.45	6.18	11.52	3.42	6.61
NMP 91215	Troodos Forest	m	s	5.5	46	45	40.3	16.0	10.3	15.61	14.59	9.58	3.74	7.51	5.76	4.03	6.14	6.05	11.18	3.21	6.43
NMP 91216	Troodos Forest	m	a	5.6	43	48	39.5	18.5	11.2	16.02	15.03	9.98	3.59	7.76	5.53	4.01	6.34	6.18	11.34	3.34	6.42
NMP 91217	Troodos Forest	f	s	8.0	51	48	39.5	16.5	11.5	15.74	14.75	10.12	3.54	7.91	5.74	4.17	6.57	6.07	11.28	3.56	6.54
NMP 91218	Troodos Forest	m	s	6.5	45	48	40.0	16.5	10.5	-	-	-	-	-	-	-	-	-	-	-	
NMP 91221	Troodos Forest	m	S	6.5	46	46	39.7	17.6	11.2	-	-	-	-	-	-	-	-	-	-	-	-
NMP 91222	Troodos Forest	m	S	6.0	44	43	39.5	17.4	10.9	15.63	14.57	9.69	3.59	7.74	5.63	3.98	6.27	5.94	11.13	3.29	6.47
NMP 91226	Troodos Forest	m	S	6.1	46	46	39.6	18.5	11.1	15.98	14.76	10.14	3.68	8.12	5.76	4.02	6.24	6.11	11.38	3.26	6.47
NMP 91227	Troodos Forest	m	a	6.5	49	48	40.0	17.8	11.3	-	-	-	-	-	-	-	-	-	-	-	
NMP 91231	Troodos Forest	f	S	7.3	50	50	40.3	17.5	11.3	-	-	-	-	-	-	-	-	-	-	-	-
NMP 91232	Çınarlı	f	S	6.6	48	46	40.5	16.5	10.8	15.88	14.83	9.98	3.47	7.83	5.59	3.95	6.44	6.21	11.41	3.47	6.57
NMP 91233	Çınarlı	m	S	5.5	51	47	40.5	17.5	10.5	16.03	15.04	9.63	3.53	7.75	5.69	3.94	6.24	6.33	11.61	3.31	6.72
NMP 91251	Akamas	m	-	6.0	45	47	39.7	17.3	11.7	15.83	14.73	9.92	3.48	7.84	5.82	3.95	6.29	5.92	11.39	3.37	6.33
NMP 91252	Akamas	m	-	5.5	49	47	39.4	16.5	10.8	15.67	14.68	9.92	3.82	7.79	5.71	4.17	6.28	6.12	11.35	3.22	6.51
NMP 91271	Çınarlı	f	-	7.0	45	49	42.0	18.0	10.2	-	-	-	-	-	-	-	-	-	-	-	-
NMP 91272	Çınarlı	f	-	7.0	49	47	38.5	16.6	10.6	15.39	14.50	-	3.62	7.70	5.74	3.93	6.18	5.88	11.14	3.17	6.34
NMP 91273	Çınarlı	f	-	8.0	47	46	41.5	18.4	10.6	16.18	15.12	9.86	3.69	7.57	5.38	3.95	6.43	6.26	11.68	3.37	6.68

| Myotis emarginatus | |
| :--- |
| NMP 90400 | Troodos Forest | f | a | 6.4 | 50 | 52 | 42.1 | 19.1 | 9.2 | 15.92 | 15.08 | 9.63 | 3.47 | 7.17 | 5.53 | 4.22 | 6.17 | 6.54 | 11.79 | 3.53 | 6.89 |
| NMP 90401 | Troodos Forest | f | a | 5.4 | 52 | 45 | 41.0 | 18.3 | 9.3 | 15.58 | 14.89 | 10.02 | 3.50 | 7.33 | 5.48 | 4.18 | 6.33 | 6.39 | 11.67 | 3.59 | 6.71 |
| NMP 90931 | Troodos Forest | m | a | 5.9 | 45 | 46 | 38.3 | 18.0 | 8.8 | 15.42 | 14.37 | 9.44 | 3.58 | 7.18 | 5.68 | 4.48 | 5.93 | 6.26 | 11.26 | 3.36 | 6.63 |
| NMP 90932 | Troodos Forest | m | a | 5.8 | 45 | 46 | 38.7 | 17.6 | 9.7 | 15.68 | 14.74 | 9.63 | 3.64 | 7.21 | 5.62 | 4.07 | 6.03 | 6.41 | 11.47 | 3.57 | 6.74 |

coll. No.	site	sex	age	G	LC	LCd	LAt	LA	LTr	LCr	LCb	LaZ	LaI	LaN	ANc		$\mathrm{M}^{3} \mathrm{M}^{3}$	CM^{3}	LMd	ACo	CM_{3}
Myotis emarginatus																					
NMP 90933	Troodos Forest	m	a	5.8	45	46	37.5	19.1	8.4	15.57	14.56	9.54	3.43	7.26	5.51	3.95	6.14	6.34	11.28	3.32	6.72
NMP 90934	Troodos Forest	m	a	6.1	46	46	38.7	18.0	9.5	15.76	14.81	9.76	3.61	7.41	5.63	4.07	6.02	6.35	11.48	3.68	6.71
NMP 90935	Troodos Forest	m	a	6.1	47	47	38.1	18.9	8.5	15.70	14.67	9.58	3.58	7.49	5.77	3.86	5.91	6.31	11.43	3.56	6.68
NMP 90936	Troodos Forest	m	a	6.3	48	47	38.2	18.3	8.4	-	-	-	-	-	-	-	-	-	-		-
NMP 91264	Troodos Forest	f	s	-	45	42	40.0	17.2	9.8	15.53	14.56	9.53	3.46	7.37	5.56	4.02	6.17	6.37	11.46	3.42	6.64
Eptesicus serotinus																					
NMP 90409	Troodos Forest	m	a	20.6	81	59	56.5	23.9	8.6	22.78	21.75	14.76	4.43	9.61	7.47	7.03	8.49	8.42	16.98	6.48	9.57
NMP 90919	Gazimağusa	f	a	30.2	84	69	56.4	25.7	9.5	23.11	21.93	15.43	4.26	9.92	7.93	7.17	9.07	8.46	17.19	6.62	9.56
NMP 91219	Troodos Forest	m	S	27.8	80	63	54.0	21.5	8.5	22.26	21.26	15.32	4.52	10.39	7.54	7.02	8.92	8.17	16.74	6.40	9.11
Eptesicus anatolicus																					
NMP 90922	Kantara	m	a	14.3	69	49	46.1	20.6	7.2	17.84	17.20	12.12	3.92	8.66	6.51	5.27	7.73	6.38	12.61	4.53	7.07
Hypsugo savii																					
NMP 90407	Troodos Forest	m	a	5.3	47	37	33.8	15.1	5.5	13.53	13.23	8.84	3.68	6.97	4.42	4.53	6.12	4.66	9.65	2.81	5.08
NMP 90410	Troodos Forest	m	a	5.4	52	44	35.9	16.1	5.5	13.89	13.61	9.14	3.48	6.72	4.49	4.71	5.72	4.64	9.93	2.88	4.98
NMP 90431	Kantara	m	a	5.8	53	40	36.1	15.0	$4 . .7$	13.58	13.01	8.84	3.59	6.74	4.58	4.18	5.94	4.61	9.19	2.84	4.91
NMP 91210	Troodos Forest	m	a	6.8	50	41	34.0	12.4	5.5	13.83	13.61	8.42	3.33	6.57	4.47	4.29	5.80	4.74	9.61	2.73	5.12
NMP 91220	Troodos Forest	f	a	7.0	51	40	35.5	13.0	5.5	13.48	13.21	8.75	3.35	6.84	4.53	4.37	5.87	4.74	9.73	2.90	5.07

Pipistrellus pipistrellus																				
MHNG 1807.089 Troodos F.		a	5.0	-	-	29.6	8.0	-	11.78	11.24	7.32	3.06	6.01	4.23	3.55	4.87	4.11	8.15	2.39	4.42
Pipistrellus pygmaeus																				
MHNG 1807.090 Troodos F.	m	a	5.0	-	-	30.3	7.8	-	11.78	11.37	7.48	3.02	6.19	4.27	3.58	4.84	4.29	8.14	2.57	4.50
MHNG 1807.091 Troodos F.	m	a	5.0	-	-	29.7	8.0	-	11.74	11.33	7.40	2.90	5.81	4.17	3.55	4.88	4.21	8.21	2.34	4.32
NMP 90408 Troodos Forest	m	a	3.6	41	34	29.5	12.5	5.4	11.74	11.47	7.57	3.07	6.02	4.25	3.77	5.07	4.28	8.22	2.56	4.51
NMP 90413 Troodos Forest	m	S	3.2	40	34	28.8	12.7	4.9	11.67	11.27	7.43	3.02	6.24	4.17	3.67	4.93	4.27	8.32	2.38	4.47
NMP 90414 Troodos Forest	m	a	3.7	40	33	30.0	12.0	4.2	11.91	11.34	7.39	3.09	6.08	4.14	3.59	4.97	4.21	8.22	2.41	4.47
NMP 90415 Troodos Forest	f	S	3.2	41	35	29.4	12.4	5.2	11.76	11.28	7.43	2.93	6.08	4.22	3.55	4.92	4.12	8.14	2.44	4.37
NMP 90416 T Troodos Forest	m	a	3.7	41	36	30.1	12.4	4.5	11.75	11.33	7.27	2.94	6.07	4.32	3.54	4.75	4.23	8.38	2.38	4.48
NMP 90417 Troodos Forest	m	a	4.1	45	34	31.3	12.7	5.5	12.43	11.85	7.82	3.18	6.14	4.22	3.67	5.12	4.41	8.64	2.44	4.75
NMP 90419 Kelefou bridge	f	a	4.0	43	35	31.1	11.9	5.2	11.75	11.54	-	3.07	6.04	4.23	3.66	5.02	4.33	8.39	2.61	4.53
NMP 90420 Kelefou bridge	m	a	2.9	42	33	28.5	13.3	4.6	11.42	10.90	7.34	2.88	5.81	3.96	3.52	4.73	4.04	8.07	2.43	4.29
NMP 90421 Kelefou bridge	f	a	3.8	39	36	29.9	12.4	5.3	11.62	11.09	7.43	3.12	6.04	4.18	3.61	5.00	4.09	8.21	2.41	4.28
NMP 90422 Kelefou bridge	f	a	3.7	44	36	31.3	12.7	5.2	12.34	11.79	7.76	3.04	6.26	4.33	3.83	4.93	-	8.87	2.61	-
NMP 90423 Kelefou bridge	f	a	3.5	39	35	30.0	12.7	5.5	11.55	11.12	-	3.02	6.07	4.25	3.57	4.86	4.17	8.12	2.49	4.44
Pipistrellus kuhlii																				
NMP 90920 Afendrika	f	a	6.2	51	42	34.3	13.7	5.4	13.07	12.33	-	3.28	6.61	4.82	4.18	5.56	4.74	9.41	3.03	5.13
NMP 90921 Afendrika	m	a	5.7	46	42	34.0	14.2	5.9	12.93	12.62	8.41	3.18	6.42	4.56	3.97	5.71	4.75	9.34	2.86	5.11

coll. No.	site	sex	age	G	LC	LCd	LAt	LA	LTr	LCr	LCb	LaZ	LaI	LaN	ANc		$M^{3} M^{3}$	CM^{3}	LMd	ACo	CM_{3}
Pipistrellus kuhlii																					
NMP 91236	Afendrika	m	a	5.8	46	37	31.0	12.2	6.4	-	-	-	-	-	-	-	-	-	-	-	-
NMP 91237	Afendrika	f	S	5.8	44	37	35.0	11.5	6.2	-	-	-	-	-	-	-	-	-	-	-	-
NMP 91238	Afendrika	m	a	5.5	44	38	33.7	11.0	6.2	12.97	12.63	8.53	3.07	6.47	4.58	4.22	5.61	4.81	9.52	2.90	5.19
NMP 91239	Afendrika	m	a	6.7	46	41	33.4	12.2	6.1	13.52	12.77	8.82	3.41	6.58	4.52	4.32	5.82	4.87	9.54	3.04	5.22
NMP 91240	Afendrika	f	a	6.3	47	36	33.0	11.2	5.9	13.62	13.07	-	3.24	6.42	4.84	4.28	5.70	5.12	9.64	2.89	5.43
NMP 91241	Afendrika	m	S	5.0	46	38	33.0	11.0	6.7	12.93	12.39	8.73	3.42	6.52	4.56	4.25	5.87	4.87	9.38	3.02	5.26
NMP 91242	Afendrika	f	a	6.0	45	41	34.3	12.2	6.4	13.21	12.89	8.47	3.29	6.35	4.64	4.19	5.84	4.83	9.56	2.89	5.12
NMP 91243	Afendrika	m	a	6.4	48	38	33.0	11.3	6.1	13.08	12.57	8.51	3.19	6.59	4.61	4.11	5.53	4.76	9.41	2.98	5.02
NMP 91244	Afendrika	m	a	5.9	45	42	35.0	13.0	6.4	12.92	12.51	8.64	3.22	6.41	4.58	4.12	5.80	4.82	9.50	3.16	5.18
NMP 91245	Afendrika	m	a	7.0	46	39	34.5	13.2	5.9	13.41	13.02	8.83	3.21	6.48	4.82	4.33	5.64	5.02	9.71	3.12	5.38
NMP 91246	Afendrika	f	a	5.3	48	-	33.0	11.3	6.2	-	-	-	-	-	-	-	-	-	-	-	-
Nyctalus leisleri																					
NMP 90411	Troodos Forest	m	a	12.9	66	43	41.5	18.0	6.8	15.21	15.27	10.61	4.77	8.54	5.63	5.87	7.21	5.84	11.42	3.52	6.33
NMP 90412	Troodos Forest	f	a	15.0	65	48	42.5	18.4	7.0	15.38	15.52	10.84	4.97	8.57	5.69	5.73	7.20	5.74	11.52	3.27	6.08
NMP 90901	Troodos Forest	m	a	13.7	68	46	43.0	19.2	6.2	15.37	15.63	10.68	4.92	8.37	5.46	5.47	6.74	5.76	11.75	3.17	6.28
NMP 90902	Troodos Forest	m	a	12.2	65	41	42.4	18.8	5.9	15.19	15.34	10.46	4.64	8.28	5.34	5.58	6.90	5.86	11.36	3.28	6.14
Nyctalus lasiopterus																					
NMP 90913	Vretsia	f	a	46.3	106	70	67.3	26.1	9.6	22.87	22.88	15.69	5.64	11.92	8.06	9.00	11.09	8.98	17.59	5.56	9.82
NMP 90914	Vretsia	f	a	44.2	101	67	66.2	26.2	9.7	21.63	22.68	15.44	5.97	12.01	8.01	8.24	10.41	8.96	17.61	5.27	9.57
NMP 90915	Vretsia	f	a	45.1	98	65	63.8	25.3	10.8	21.17	21.75	15.22	5.48	11.58	8.03	8.51	10.46	8.82	16.74	5.21	9.41
NMP 90916	Vretsia	f	a	48.8	99	76	66.1	26.7	10.0	21.75	22.41	15.83	5.71	11.74	8.07	9.19	10.97	8.83	17.47	5.52	9.40
NMP 90917	Vretsia	f	a/s	40.2	94	68	68.1	25.6	10.5	-	-	-	-	-	-	-	-	-	-	-	-
NMP 90918	Vretsia	m	s/j	46.2	101	67	66.8	25.8	9.2	22.16	22.83	15.89	5.82	11.36	7.87	8.97	10.69	8.81	17.68	5.19	9.58
Plecotus kolombatovici																					
NMP 90398	Akamas	m	a	6.0	52	50	38.0	37.3	15.4	16.24	15.28	8.61	3.41	8.40	5.42	3.69	5.83	5.42	10.24	3.02	5.79
NMP 90903	Troodos Forest	f	a	6.5	49	55	38.0	39.9	17.2	16.63	15.48	8.34	3.23	8.08	5.14	3.63	6.14	5.59	10.28	3.06	6.06
NMP 90904	Troodos Forest	f	a	6.7	49	53	39.6	40.0	17.5	16.44	15.38	8.74	3.30	8.48	5.36	3.75	-	5.43	10.27	3.03	5.89
NMP 90905	Troodos Forest	f	a	6.5	51	54	39.3	38.5	16.0	16.62	15.43	8.43	3.07	8.03	5.21	3.49	5.97	5.48	10.33	3.04	5.91
NMP 90906	Troodos Forest	f	a	5.8	50	50	38.3	39.9	17.0	16.38	15.39	8.53	3.29	8.24	5.27	3.43	5.81	5.35	10.24	2.91	5.82
NMP 90907	Troodos Forest	f	a	6.7	49	53	39.7	38.5	16.2	16.31	15.14	8.53	3.14	8.07	5.28	3.58	5.93	5.13	9.83	3.02	5.63
NMP 90908	Troodos Forest	f	a	6.6	46	52	37.5	37.6	14.5	16.28	14.97	8.61	3.27	8.37	5.34	3.51	5.51	5.28	10.12	2.94	5.64
NMP 90909	Troodos Forest	f	a	6.8	52	51	40.7	39.0	16.3	-	-	-	-	-	-	-	-	-	-	-	-
NMP 90910	Troodos Forest	m	a	6.1	50	50	37.7	38.8	16.4	16.13	15.08	8.32	3.18	8.16	5.24	3.42	5.68	5.27	9.98	2.94	5.71
NMP 90911	Troodos Forest	m	a	6.6	51	48	36.5	38.4	15.8	16.09	14.93	8.52	3.19	8.35	5.28	3.48	5.76	5.24	9.89	2.91	5.61
NMP 90912	Troodos Forest	m	a / s	6.1	49	48	38.5	38.8	17.0	-	-	-	-	-	-	-	-	-	-	-	-
NMP 91209	Troodos Forest	f	s	7.5	43	49	38.0	37.5	16.7	16.53	15.34	8.61	3.12	8.59	5.40	3.63	6.04	5.49	10.32	3.02	5.91
NMP 91223	Troodos Forest	f	a	7.0	46	51	38.2	37.5	16.5	-	-	-	-	-	-	-	-	-	-	-	-

coll. No.	site	sex	age	G	LC	LCd	LAt	LA	LTr	LCr	LCb	LaZ	LaI	LaN	ANc		$M^{3} M^{3}$	CM^{3}	LMd	ACo	CM_{3}
Plecotus kolombatovici																					
NMP 91224	Troodos Forest	m	a	6.6	46	49	38.2	36.0	16.2	16.33	15.18	8.79	3.26	8.29	5.29	3.58	5.91	5.37	10.19	2.94	5.76
NMP 91228	Troodos Forest	f	a	7.1	46	50	37.7	38.0	18.3	16.23	15.15	8.55	3.28	8.29	5.23	3.62	5.90	5.38	10.19	3.04	5.76
NMP 91268	Agırdağ	f	s/a	7.0	46	47	38.0	38.0	18.7	16.54	15.38	8.54	3.19	8.18	5.42	3.69	6.13	5.54	10.31	2.97	5.74
Miniopterus schreibersii																					
NMP 90402	Troodos Forest	m	S	9.2	51	63	44.2	12.3	5.4	-	-	-	-	-		-		-			
NMP 90403	Troodos Forest	m	a	9.8	52	59	44.8	13.7	6.0	-	-	-	-	-	-	-	-	-	-	-	
NMP 90404	Troodos Forest	m	a	10.8	55	62	45.4	12.6	5.6	15.00	14.61	8.54	3.56	7.71	6.34	4.58	6.22	5.88	10.54	2.46	6.31
NMP 90405	Troodos Forest	m	a	10.6	55	62	45.3	13.5	5.8	15.21	14.77	8.72	3.68	7.98	6.47	4.68	6.36	5.93	10.77	2.68	6.33
NMP 90406	Troodos Forest	m	a	10.7	58	64	44.8	13.5	5.9	15.02	14.57	8.71	3.66	6.52	6.50	4.67	6.37	5.96	10.72	2.57	6.29
NMP 90434	Kalavasos	m	a	10.6	55	62	44.9	12.4	5.5	15.02	14.51	8.54	3.61	7.80	6.33	4.59	6.37	5.90	10.64	2.51	6.32
NMP 91207	Akamas	f	s	-	53	61	46.0	10.0	6.0	14.79	14.41	8.53	3.41	7.71	6.09	4.59	6.39	5.93	10.54	2.43	6.29
NMP 91253	Akamas	f	S	10.0	50	59	45.3	11.3	5.7	-	-	-	-	-	-	-	-	-	-	-	
NMP 91254	Akamas	f	S	9.0	52	60	44.5	10.5	5.3	14.77	14.38	8.61	3.57	7.84	6.12	4.54	6.34	5.84	10.47	2.41	6.22
NMP 91255	Akamas	f	S	10.0	53	60	44.2	10.2	5.6	14.67	14.39	8.58	3.57	7.91	6.28	4.61	6.32	5.87	10.46	2.51	6.24
NMP 91256	Akamas	m	-	12.0	52	59	44.4	10.3	5.0	14.84	14.47	8.63	3.68	7.87	6.34	4.72	6.27	5.83	10.52	2.51	6.24
NMP 91257	Akamas	f	-	10.0	59	60	44.4	10.7	6.3	14.63	14.28	8.53	3.57	7.86	6.34	4.54	6.33	5.83	10.46	2.48	6.24
NMP 91258	Akamas	m	-	10.0	57	58	43.8	11.5	5.8	15.18	14.68	8.73	3.53	8.02	6.36	4.63	6.37	5.94	10.71	2.43	6.33
NMP 91259	Akamas	f	-	9.0	55	58	44.5	11.2	5.8	14.67	14.28	8.58	3.64	7.76	6.18	4.62	6.31	5.83	10.53	2.44	6.21
NMP 91260	Akamas	m	-	9.0	57	59	45.0	11.3	6.4	15.02	14.49	8.48	3.56	7.88	6.23	4.53	6.37	5.89	10.67	2.47	6.27
NMP 91265	Troodos Forest	m	-	10.0	52	53	44.2	11.7	6.2	-	-	-	-	-	-	-	-	-	-	-	
NMP 91266	Troodos Forest	m	-	-	57	56	44.2	11.4	6.5	14.89	14.51	8.54	3.52	7.64	6.27	4.64	6.41	5.89	10.62	2.45	6.27
NMP 91267	Troodos Forest	m	-	-	54	57	44.5	10.6	6.7	14.81	14.36	8.58	3.62	7.83	6.31	4.54	6.42	5.85	10.71	2.46	6.27
NMP 91826	Akamas	f	-	9.5	59	58	45.0	11.3	5.8	-	-	-	-	-	-	-	-	-	-	-	
NMP 91828	Akamas	m	-	-	56	56	44.7	10.2	5.3	-	-	-	-	-	-	-	-	-	-	-	
NMP 91829	Akamas	f	-	13.0	54	57	46.0	11.0	6.0	-	-	-	-	-	-	-	-	-	-	-	

[^5]
[^0]: * Note. Hadjisterkotis (2006) reviewed the history of official campaigns for the destruction of R. aegyptiacus populations in Cyprus, organised by authorities of the British colonial government and government of the Republic of Cyprus. The campaigns took place in the period from 1927 to 1983 (with several breaks and with different intensity) and rewards for killed bats were paid in the early years of the campaigns. In the years 1933-1938, rewards for some 10,000 killed bats were paid, and in 1955-1956 for almost 1,600 bats (Hadjisterkotis 2006). Although the official support for killing of R. aegyptiacus has not been recently prolonged according to the data by Hadjisterkotis (2006), we cannot exclude a continuation of the destructions by an initiative of local farmers as suggested by records of fumigated caves (see also Boye et al. 1990). Anyway, in the present time, R. aegyptiacus is officially protected in Cyprus by national and European laws and its numbers are supposed to be recovering (Hadjisterkotis 2006).

[^1]: * Note. Bauer in Spitzenberger (1979: 450) mentioned a note on the first possible specimen of R. hipposideros from Cyprus: "Den frühesten, nicht genauer lokalisierten Nachweis der Kleinen Hufeisennäse für Zypern stellt ein Exemplar dar, das 1858 vom Wiener Naturalienhändler Ludwig Parreys gekauft und von Leopold Fitzinger unter dem (damals noch) Manuskriptnamen Rhinolophus minimus (publiziert erst 1861 durch Heuglin) registriert wurde. Das Belegstück (Acqu.-Nr. 1858/II/6) ist in der Sammlung nicht mehr nachzuweisen." Bauer determined the Fitzinger's specimen as R. hipposideros, since he co-identified the name R. minimus Fitzinger (nomen nudum) with R. minimus von Heuglin, 1861, contemporarily considered a synonym of R. hipposideros (Andersen 1907, Ellerman \& Morrison-Scott 1951, Felten et al. 1977, Simmons 2005, etc.). However, elsewhere, Fitzinger (1870) noted under R. clivosus ($=$ R. blasii) from Cyprus: "Einige sehr junge Individuen, die Jan von der Insel Cypern erhielt, veranlaßten ihn zur Aufstellung einer besonder Art, die er im zoologischen Museum zu Mailand mit dem Namen ‘Rhinolophus minimus' bezeichnet hatte". Although Fitzinger (1870) described (most likely) different specimens than noted by Bauer (in Spitzenberger 1979), he mentioned a use of the name R. minimus in connection with the present species R. blasii. Since Bauer could not revise the respective specimen of ' R. minimus', it cannot be excluded that this lost specimen might actually belong to a different species than R. hipposideros.

[^2]: * Note. Dr. Dieter Kock (in litt. \& ad verb.) pointed out a poor credibility of some distribution data published by Professor Heinrich Kahmann (Munich). His records of Eliomys melanurus (Wagner, 1840) in an inaccessible part of Saudi Arabia (Kahmann 1981; for details see Nader et al. 1983), the record of a nursery colony of Hypsugo savii (Bonaparte, 1837) at a mountain hut in southern Bavaria in 1950s (Kahmann 1958), the records of Apodemus agrarius (Pallas, 1771) in eastern Austria (Kahmann 1961; see Spitzenberger 1997) as well as the above discussed record of M. capaccinii in Cyprus are for more reasons considered to be quite dubious and rather unlikely. Although some of these records seem to be possible when taking the entire respective distribution range into account, a detailed assessment of their circumstances rather degrades their reliability.

[^3]: * Note. Hanák et al. (2001: 315) suggested occurrence of P. pipistrellus s.str. in Cyprus: "Experiences obtained by using an ultrasound detector on Cyprus, suggest that it is inhabited by both phonic types [of P. pipistrellus group] (J. Gaisler, pers. com.)." This report was based on a record made using a heterodyning bat detector by Professor Jiří Gaisler (Brno) in the surroundings of the monastery at Agia Napa on 6 September 2000 (J. Gaisler, in litt., 2001). However, after recent re-examination of his field notes, the author concluded that the data were insufficient to be able to recognise of the two species in question. Thus, only the records of numerous P. kuhlii registered by the detector at the monastery of Agia Napa can be considered relevant (J. Gaisler, in litt., 2007).

[^4]: * Note. Although the systematic relations within the P. teneriffae/kolombatovici clade are rather unresolved (see the review by Benda et al. 2006), here we tentatively follow the taxonomic arrangement suggested by Mayer et al. (2007). They regard the populations of the clade from southeastern Europe and the Middle East to belong to P. kolombatovici, a species genetically separated from the North African P. gaisleri Benda, Kiefer, Hanák et Veith, 2004 and the Canarian P. teneriffae Barrett-Hamilton, 1907.

[^5]: Tadarida teniotis
 NMP 91831 Paramytha mat

